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Abstract

Recent years have seen a proliferation of exact results in quantum field theories,
owing mostly to supersymmetric localisation. Coupled with decades of study of
dualities, this ensured the development of many novel nontrivial correspondences
linking seemingly disparate parts of the mathematical landscape. Among these,
the link between supersymmetric gauge theories with 8 supercharges and Painlevé
equations, interpreted as the exact RG flow of their codimension 2 defects and
passing through a correspondence with two-dimensional conformal field theory, was
highly surprising. Similarly surprising was the realisation that three-dimensional
matrix models coming from M-theory compute these solutions, and provide a non-
perturbative completion of the topological string. Extending these two results is
the focus of my work.

After giving a review of the basics, hopefully useful to researchers in the field
also for uses besides understanding the thesis, two parts based on published and
unpublished results follow. The first is focused on giving Painlevé-type equations
for general groups and linear quivers, and the second on matrix models.
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Chapter 1

Introduction

1.1 Organisation of the introduction
Caveat lector. This work is, similarly to its material, nonlinear. The chapters of the
introduction are not presented in sequential order, and refer one to another often.
The main organisational principle is the following small category

Ω− background Defects

d = 4, N = 2
Coulomb branch

Liouville CFT
chiraln−pt.
function

SW curve UV curve

Top. String
Isomonodromic

Problem
τ

function

DW Int.Sys.

d = 3
Matrix Model

periods
engineering

embedding
Hanany

Witten

deform

Dyson

Schwinger

cover

AGT

on

on

class S blowup

CFT/Isom.

SW/IntSys

Spectral

transform

deaut.

aut.

TS/ST/tau
grand canonical

potential

Kiev Ansatz

Figure 1.1: Roadmap, clickable.

and the introduction itself serves as a functor, of sorts, to the narrative structure
of human cognition. The reader is invited to find a reasonable approximation to
a Hamiltonian path through the introduction, or forget about it and just read as
presented, or forget about a single path and, aided by the roadmap, use this work
as a reference for the future. It is my hope that in this latter function this thesis
will serve as a useful review, especially among my younger academic brothers and
sisters, and those yet to join us.
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Introduction

After the solve of the introduction, the coagula of the mostly published material
will be presented in two separate sections, fulfilling the alchemical formula.

Finally, a note on style. I have tended to avoid the use of the "scientific we"
unless the work features the work of my collaborators or is of an introductory,
repetitive character, establishing facts well known to all of "us".

1.2 Supersymmetric gauge theory
The gauge theories encountered in this work are mostly those with 8 supercharges,
which in d = 4 dimensions means they have extended supersymmetry. This intro-
duces a lot of physically unrealistic features, such as the presence of adjoint matter,
and at the same time introduces a tremendous amount of geometry to the theory –
the scalars can be seen to locally parametrise a target space with some geometric
requirements, the couplings are described by certain "canonical" geometric objects
[57]. Usually, if we consider the full array of defects and extended objects, the the-
ory thus written consists of maps of points, lines, surfaces, etc, into a target space
– morally a functor of points, with the path integral providing a sort of weighted
sum. Although nonsupersymmetric QFT also heavily features geometric structures,
I have personally heard many criticisms of this unreality of supersymmetric physics
– and this is not even talking about the "dynamically trivial" topological field the-
ories or theories in dimensions not four!

There should be no excuses. The increasing geometrisation of physics might
mean that physics is now used to calculate mathematical instead of concrete reali-
ties, but this has served to dignify physics – it has taken centre stage, spearheading
advancements in mathematics left, right and centre throughout the last century,
and it shows no signs of stopping in the current one.

Instead of being viewed through the prism of either "real-world" physics or "imag-
inary" mathematics – as if imagination is insulting –, in mathematical physics /
physical mathematics, more similarly to its sororal mathematics than physics, we
find an already well-established science in an unfettered form, growing on its own
terms led by intellectual curiosity and creativity, and casting aside the motivation of
exploitable material innovation which an obsession on "real world progress" would
demand. It is a happy accident that this can all be justified as perhaps leading to
physically viable theories after symmetry breaking, but to hope for flying cars as
the end result is to miss the point entirely. In the Hilbertianesque programme [205],
Gregory Moore also sums up an optimistic attitude necessary for this, and indeed
any, successful intellectual endeavour

If a physical insight leads to a significant new result in mathematics, that
is considered a success. It is a success just as profound and notable as an
experimental confirmation from a laboratory of a theoretical prediction
of a peak or trough. For example, the discovery of a new and powerful
invariant of four-dimensional manifolds is a vindication just as satisfying
as the discovery of a new particle.

This science furthermore incorporates a set of experimental methods deemed of
no less importance by our scientific community than the theoretical, found in
experimental-mathematical techniques of computer-assisted numerical and symbolic
manipulation.

12 Fran Globlek
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1.2.1 Effective IR dynamics of N = 2 super Yang-Mills
We can interpret the scalar components of chiral multiplets of a Lagrangian d = 4
N = 1 theory as a sigma model to a Kähler manifold target space M with a
superpotential as a Morse function, and gauge symmetry being a gauging of a
subgroup of the isometry group Iso(M) [57]. This fixes the chiral-vector interaction,
but there is still a tremendous amount of freedom left in choosing a holomorphic
superpotential.

Increasing the amount of supersymmetry partially fixes this choice. N = 2
hypermultiplets consist of a pair of N = 1 chiral multiplets while N = 2 vector-
multiplets (φ, λα, λ̄α̇, Aµ) consist of a N = 1 vectormultiplet and a N = 1 chiral
multiplet in the adjoint representation of the gauge group G1. Further, matter-
matter coupling is forbidden by the extended supersymmetry, so interactions are
possible only through the gauge group, i.e. by specifying a matter representation.
Quivers, encoding choices of gauge groups and matter representations, are therefore
often used to specify the theories completely.

The geometry is no longer Kähler but special Kähler and is fully fixed by a
holomorphic Kähler prepotential F(z). The kinetic term can be written in terms
of the N = 2 superspace as

Lkinetic = Im

∫
d2θd2θ̄F(Φ)

where Φ = φ+ ... is a chiral superfield, which makes up the N = 2 vectormultiplet.
The Kähler potential is then given by K = ImΦ†

a∂ΦaF and the metric on the moduli
space is

gab = ∂a∂bF

The only renormalisable choice is quadratic, F(x) = (τUV /2)x
2. Here, τUV =

4πi/g2 + θ/2π is the complexified gauge coupling. If we explicitly integrate out
the auxiliary field present in the superspace formalism, in the case of a pure gauge
theory we find the effective potential

V (φ) =
1

g2
tr
[
φ, φ†]2

which needs to vanish for the vacuum to be supersymmetric. This means φ is valued
in the Lie algebra of the maximal torus of G, or the Cartan of g = Lie(G) if G is
semisimple. As such, if the scalar vevs are nonzero, interaction terms proportional
to tr[φ,Aµ]

2 in the Lagrangian will give mass to the vector field and result in W-
bosons with masses 〈φ〉r, where r is a root of the Lie algebra. We have a breaking
g → U(1)rkG. This is called the Coulomb branch. The theory has to be specified in
terms of Weyl-invariant combinations of the adjoint scalar vevs, so

M = Spec[g]G = SpecC[u1, ..., urkG]

where ui = trφi. In the general case with matter, the effective potential is more
complicated and involves matter multiplet vevs. One solution of the F and D-term

1Unitarity demands positive definiteness of the kinetic term, which can be shown [269, §15.2]
to mean that G is (split) reductive, as its Lie algebra Lie(G) = g has to be a direct sum of simple
Lie algebras and U(1) subalgebras.

Fran Globlek 13
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vacuum equations is the same solution except with matter vevs turned off, so it is
also called the Coulomb branch. Another phase, called the Higgs branch, is specified
by the matter multiplet vevs and adjoint vevs turned off. It receives no quantum
corrections and is not the focus of this work.

This splitting of the vacuum moduli space into disjoint Coulomb and Higgs
branches is a general feature of N = 2 theories, although mixed branches exist
for higher rank theories. Physically, these represent different phases of matter. A
quark-antiquark pair is created at a distance r and propagating for time T before
annihilating can be represented by a Wilson loop taken over a r×T rectangle. The
classical potential V (r) they feel can be extracted from the expectation value of the
loop as T → ∞,

e−TV (r) ∼ 〈trPei
∫
A〉

In the Coulomb phase, V (r) ∝ 1/r leads to standard electrodynamics, while in the
Higgs phase, V (r) = const. In the dual frame, which we will soon discuss, nothing
changes on the Coulomb branch, while monopoles in the Higgs phase experience
confinement.

Now consider one-loop renormalisation, leading to

µ
dg

dµ
= −b g2

16π2
+O(g5) ⇒ τ(µ) = τUV − b

2πi
log

µ

ΛUV

= − b

2πi
log

µ

Λ
,

where Λ = ΛUV e
2πτUV /b is the emergent dynamical scale. Beyond the perturbative

one-loop corrections, due to supersymmetry the only possible corrections are in-
stanton corrections, which modify the gauge coupling according to holomorphic RG
flow as

τ(µ) = − b

2πi
log

µ

Λ
+
∑
n≥0

an

(
Λ

µ

)bn

Therefore, we see that RG flow takes us from the microscopic theory correspond-
ing to a quadratic F to the realms of effective IR dynamics specified by the non-
renormalisable general F(x), as τ = F ′′ is the holomorphic function written above.
Considering the Coulomb branch, deep IR means we integrate out the massive
W-bosons. As such, we are left with the broken gauge group of rkG copies of
U(1). Given scalar vevs 〈φi〉 = ai, the metric on the IR Coulomb branch is
gij(a) = Im ∂i∂jF = Im τij(a). Clearly, it should be positive to ensure unitarity.

However, there is a tension here as we cannot have a globally defined matrix
of gauge coupling τij which is both holomorphic and having a positive definite
imaginary part2. The great insight of Seiberg and Witten [251] was to resolve this
in two parts. First of all, we have to drop a global description. Let aDi = ∂aiF be a
dual coordinate on the Coulomb branch. It can be shown that a theory formulated
entirely in terms of aD is a dual magnetic description of the theory, an avatar of
Montonen-Olive duality which changes τ 7→ −1/τ and exchanges electric charges
and magnetic monopoles. The pair (a, aD) is called an electric-magnetic frame, and
it locally furnishes coordinates on the Coulomb branch. A key insight, however, is
that they are multi-valued. The Coulomb branch has to be parameterised in terms
of Weyl-invariant combinations of the adjoint scalar vevs a. In the G = SU(2) case,
Weyl symmetry is just reflection around the origin, so a good Coulomb branch

2Then Im τ would be a bounded harmonic function on R2, so it has to be constant.
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parameter is u = a2. But this means a is a square root, and both (a, aD) develop a
nontrivial monodromy around infinity, since u 7→ e2πiu maps a 7→ −a, and we can
calculate that aD 7→ −aD + 2a. Seiberg and Witten realised that this means the
Coulomb branch has singular points.

Second of all, besides the singular points, they recognised that these conditions
determine a Riemann period matrix of a Riemann surface. On a Riemann surface
Σg of genus g, choose a Torelli marking of A- and B-cycles Ai ∩Bi = δij, Ai ∩Aj =
Bi ∩ Bj = 0 in H∗(Σg,Z) and a basis of holomorphic differentials ωi normalised so
that ∮

Aj

ωi = δij,

∮
Bj

ωi = τPeriodij

Suppose we are given a meromorphic differential λ ∈ H1(Σg) depending on a such
that ∂aiλ = ωi up to an exact 1-form. Then the coordinates can be given as

ai =

∮
Ai

λ, aDj =

∮
Bj

λ

and the gauge coupling matrix is τij = ∂aja
D
i = τPeriodij . This can be used to recon-

struct the prepotential F . Therefore, the theory is solved by giving the algebro-
geometric datum (Σ, λ) of a Riemann surface with punctures and a meromorphic
one-form. At the punctures, the residue of λ should give the physical masses. These
punctures are not to be confused with the punctures on the moduli space M itself,
where certain combinations of charges and magnetic monopoles become massless,
so Wilsonian RG flow diverges. Rather, the moduli space M itself has the geometry
of a g-torus fibration over a base B parameterised by Weyl-invariant polynomials,
M = Jac(Σ) → B. The tori have local coordinates (ai, a

D
i ). On the singular points

of the base, the tori degenerate. The singular points have been classified by Kodaira
for elliptic fibrations, and their monodromies are known.

It’s not obvious that this is the full solution. Consider a pure theory. For
G = SU(2), we need rkG = 1 pair of canonically conjugate coordinates (a, aD), so a
genus g = 1 surface which gives us two periods. For rank g, the space of symmetric
matrices τij has dimension g(g + 1)/2, those with positive definite imaginary part
forming a cone. But the moduli space of genus g > 2 Riemann surfaces has dimen-
sion 3g−3. I believe, however, that Novikov’s conjecture along with a generalisation
of Witten’s conjecture [275] solves the issue. Namely, a theta function with period
matrix τij may be associated to each theory. It is not clear that this theta function
may be associated to a Riemann surface. On the other hand, 2-TQFTs have tau
functions which solve the KP hierarchy, including the topological string. In this
case, the tau function can be identified with the theta function, and a topologically
twisted version of the N = 2 theory can be seen as arising from compactifying the
topological string. Therefore, by Novikov’s conjecture, τij is a period matrix of a
Riemann surface.

Be as it may, we are mostly interested in the so-called class S theories, which
are built by compactification which features the Seiberg-Witten curve directly. An
example is pure SU(N) super Yang-Mills, given in hyperelliptic form as [113]

Y 2 = PN(w)
2 − 4Λ2N , PN =

N∏
i=1

(w − wi), Y = ΛN

(
z − 1

z

)
(1.1)

Fran Globlek 15



Introduction

which is a N -fold covering of the 2-punctured z-plane and a 2-fold covering of the
w-plane, and the Seiberg-Witten differential is λ = wdz/z. The Weyl-invariant
coordinates are the "Chern classes"

uk = (−1)k+1
∑

i1<...<ik

wi1 · · ·wik

which are the coefficients in the expansion of PN(w), so we can see how the Seiberg-
Witten curve varies along the Coulomb branch. It can be seen that ∂uk

λ =
wN−kdw/Y , which are the canonical basis of H1(Σg) of a hyperelliptic curve. u1 is
a trace and vanishes.

In general, the Seiberg-Witten curve can be written as a ramified covering of
another punctured Riemann surface, in the last example given by the z-plane. This
base is called the UV curve, because UV data such as hypermultiplet masses are
specified by the singularities of the holomorphic differential at those points.

The elliptic fibration structure of the Coulomb moduli space comes alive if the
IR theory is further compactified on a circle, R3×S1, as the d = 3 theory itself can
be seen as a sigma model on M. The scalars ai stay, but the gauge field Ai

µdx
µ

decomposes to a 3-dimensional vector Ai
jdx

j along with a periodic (Peccei-Quinn)
scalar coming from the Wilson line θie =

∫
S1 A

i
µdx

µ. But a 3-dimensional vector is
dual to a periodic scalar field itself, defined by ?3dθim = dAi. Together, this set of
fields describes M concretely as a torus fibration of a base given by invariants made
from the scalar field, which is a complex integrable system. Further, N = 4 d = 3
supersymmetry means the target space has a hyperkähler structure. So in this case
we recover some facts about the space, although the Seiberg-Witten solution itself
is obscure.

1.3 The Omega Deformation
In [221] it was noted that the solution of N = 2 super Yang-Mills on R4, by which
we mean its low-energy prepotential, can be found by deforming the theory with
two parameters ε1,2, so that the prepotential is recovered in the limit

lim
ϵ1,2→0

ε1ε2 logZ(ε1,2, a) = F(a)

and Z(ε1,2, a) is the partition function of the deformed theory, which turns out to be
the same as the (generating function of the) instanton moduli space integral [207],
already known for some years, up to a classical and perturbative part.

The N = 2 supersymmetric algebra in four dimensions has, unlike with more
supersymmetry, essentially only one topological twist, the Donaldson-Witten twist.
The N = 2 algebra is U(2)R = U(1)R×SU(2)R R-symmetric. On the other hand, on
a spin 4-manifold M we also have an Spin(4) ∼= SU(2)1×SU(2)2 action, the Lorentz
group. We pick a homomorphism SU(2)R → Spin(4). This changes the space of
fields, since the extended N = 2 indices and (dotted) spinor indices can be equated
by the homomorphism. So, if the vector multiplet was (φ, λiα, λ̄

i
α̇, Aµ), with i the

extended supersymmetry index, then what used to be the chiral gaugino λiα becomes
a vector under the twist, and the antichiral one decomposes into a scalar and an
ADS two-form. This general phenomenon means the odd superspace becomes (C⊕
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(Λ2TM)+) while the even one becomes just the tangent bundle TM . In this way,
even spaces which might not have covariantly constant spinors, needed to define
supersymmetry, end up with one well-defined scalar supercharge. Often, the energy-
momentum tensor of these theories ends up being exact under this supercharge, and
therefore, observables closed under it are invariant to changes in the metric. This
is the construction of cohomological field theories [276]. The self-dual "fermion"
turns out to be a Lagrange multiplier imposing 1/2εabcdeFce = −Fab while the super
Yang-Mills action is

S ∈
[
2πiτ

8π2

∫
M

trF ∧ F
]

in the supercohomology. As such, the evaluation of the path integral reduces to
integration on the finite dimensional instanton moduli spaces. There is also an anti-
twisted theory which localises on the ASD solutions. This amounts to redefining the
coupling τ , however. The presence of matter means the theory localises on certain
monopole solutions and defines the Seiberg-Witten invariant of M .

This is all much too restrictive to be of use on the "trivial" spaceM = R4. First of
all, the chiral ring of observables is somewhat limited by there not being nontrivial
cycles, as pointed out by Nekrasov. Secondly, the moduli space of n-instantons,
meaning those with second Chern class c2(P → M) = n, Mn, is non-compact due
to point-like instantons. Uhlenbeck-Donaldson compactification adds these points,

M̄n = ∪n
k=0Mn−k × SymkC

however the space is singular due to reducible connections. The twist appropriate
for solving the theory, turns out to be the one introduced by Moore, Nekrasov and
Shatashvili [206], although it first appeared in the context of d = 6 dimensional
super Yang-Mills. The BRST operator is in this case not exact, but squares to an
isometry of the space. This means we localise on those ADS solutions invariant
under a certain torus action, which corresponds to isometries of a deformed R4,
the Omega-deformation. It is crucial to note that these are the (A)SD connections
on the original R4, not on the Omega-deformation. That is, although the Omega-
deformation R4

ϵ1,2
can be given a metric of its own in five dimensions as a twisted R4

fibration of S1, the so-called Melvin space, which we could reasonably pullback to
the fiber, the localisation involves the flat, run of the mill R4 metric and its Hodge
star. There are no d = 5 "instanton particles" involved.

Specifically, we consider R4 = C×C and consider the torus action T = C××C×.
Actually, instantons are (A)SD connections with finite action, which implies the
vanishing of the curvature at infinity, or A→ g−1∂g for some g ∈ G at infinity. Note
that, amazingly, the scalar supercharge is on-shell exactly the BRST differential
from BV-quantization of the bare topological action S ∝ c2(P → M) [253, §2.6].
Therefore, it has to square to an infinitesimal gauge transformation when acting
on the vector field Aµ, and we find δ2Aµ ∝ ∇µφ. Moreover, acting on the scalar
field itself we find δ2φ† ∝ [φ, φ†]. For concreteness we consider the gauge group
G = U(k). In the SW theory, it was supersymmetry which imposed the Coulomb
branch breaking of the gauge group to its Cartan U(k) → U(1)k as one of the
solutions. Here, we find two things:

1. nilpotence of the twisted supercharge demands [φ, φ†] = 0

2. φ parametrises infinitesimal gauge transformations
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Therefore, we have gauge transformations parametrised by the (vacuum expecta-
tion) values 〈φ〉 = a of the adjoint scalar φ. These are rigid gauge transformations
and should be interpreted as rotations of the framing at infinity. Although we could
think of the gauge group as being asymptotically spontaneously broken to the Car-
tan U(1)k, we are looking at instantons of the full gauge group G "in the bulk".
However, we will shortly show that we have to localise at fixed points of this torus
action. Precisely this will ensure that all our solutions are indeed on the Coulomb
branch that is, that the gauge group is not merely asymptotically but everywhere
spontaneously broken. This is because the centraliser of the (maximal) torus action
in a connected, compact Lie group is precisely the Cartan, which is the torus itself.
So our solutions are actually on the torus, as the fixed points of the action have
to be in the centraliser. In [215, §4], Nakajima and Yoshioka notice that rank 1
sheaves, in a direct sum of which the instantons split, are easy to study, luckily for
the entire mathematical physics community. As we switch the Omega deformation
off to get back to Seiberg-Witten theory, we remain with instanton corrections on
the Coulomb branch, with broken U(k) → U(1)k, which also ensures supersymme-
try is unbroken. This is in spite of the fact that our single BRST scalar is weaker
than full N = 2 supersymmetry, a happy accident of sorts.

The Omega background itself can be described as already mentioned, as a
twisted R4 fibration of S1, so that the total space the quotient of C2×S1 under the
Z action

n . (z1, z2, t) = (eβϵ1nz1, e
βϵ2nz2, t+ βn)

where β is the radius of the circle. The four-dimensional theory is the dimensional
reduction of this Melvin space to the R4 fiber, alternatively the β → 0 limit when
the base shrinks to a point. The Omega background is often denoted by R4

ϵ1,2
. ε1,2

are the first Chern class of the R4 bundle, and we often view them as equivariant
parameters. Two main phases are the self-dual background where ε1+ε2 = 0, which
is linked to topological string theory with gs = ε1, and the Nekrasov-Shatashvili limit
ε2 = 0, which is quite singular and has some interesting links to quantum mechanics
with ℏ = ε1.

Having deformed the 4 dimensional N = 2 Coulomb branch dynamics to a
a twisted TQFT and seen that the super Yang-Mills action reduces to the second
Chern class and an exact term, and localises to ASD solutions, and breaks to U(1)rkG
under a torus action, we can convince ourselves that the way forward is to look at
the torus T-invariant solutions on the moduli space Mn,G of n-instanton solutions.
We also have to take into account quantum fluctuations in the path integral, which
don’t depend on the instanton number and terminate on the one-loop term due to
the supersymmetry. All in all, we have the decomposition of the path integral to

Z(ε1,2, a|Λ) = Zclassical(ε1,2|Λ)Zone-loop(ε1,2, a)Zinstanton(ε1,2, a|Λ)

where Λ is the complexified dynamical scale of super Yang-Mills, and

Zclassical(ε1,2|Λ) = (Λ2h∨
)

1
2ϵ1ϵ2

a2
, Zone-loop(ε1,2, a) = exp

{
−
∑
α∈R

γϵ1,ϵ2(a · α|Λ)

}

are the tree-level and one-loop terms, explained in [221, §3.10], [253, §2.3], and [215],
and the instanton part is the generating function of instanton volumes, futher lo-
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calised to T-equivariant points using essentially the Duistermaat-Heckman formula,

Zinstanton(ε1,2, a|Λ) =
∑
n≥0

Λ2h∨n

∫
Mn,G

1 =
∑
n≥0

Λ2h∨n
∑

p∈(Mn,G)T

1

Eu(TpMn,G)
(1.2)

To actually calculate this, we switch to equivariant localisation [143, 240, 241].
Namely, consider a smooth manifold M with a G-action. If the action is free, we
define equivariant cohomology by H•

G(M) = H•(M/G) since M/G is smooth. If
the action isn’t free, we would get stacky points with this construction, so we define
H•

G(M) = H•(M ×G EG), where EG is the universal bundle. As an example,
for a point we get H•

G(pt) = H•
G(EG/G) = H•

G(BG). Over C, this is C[g]W , the
characteristic classes, given by Weyl-invariant polynomials of the Lie algebra.

In general, we would like to describe it using a complex. On α ∈ Ω•(M)⊗C[g],
the natural G-action is (g . α)(x) = α(g−1x). Equivariant differential forms satisfy
α(gx) = (g . α)(x), so they are invariant under the G-action. This leads us to
consider G-equivariant differential forms, Ω•

G(M) = (Ω•(M)⊗ C[g])G.
The differential itself is available via the topological twist. Namely, in general

we want it to square not to zero but to an isometry generated by a vector field V ,
and this can be achieved by

dG = d + ξiV ⇒ d2
G = ξ{d, iV } = ξ£V

if £V is seen to act on Ω•. Then H•
G(M) = ker dG/imdG.

It turns out integration of G-equivariant top forms is very simple if G = T is a
torus. Namely, if πM : M → pt is a projection to a point, then integration can be
seen as the pushforward to the T -equivariant cohomology πM

∗ = H•
G(M) → H•

G(pt).
Consider the inclusion i : F ↪→ M of T -fixed points into M . The important non-
trivial property of the Euler class Eu(NF ) of the normal bundle to F in M is that
it doesn’t vanish, and that

i∗ΦF = Eu(NF )

where ΦF is the Thom class, the Poincare dual to F , i∗ΦF = 1. This lets us write
the pushforward πM

∗ in terms of of the composition πF = i ∼= πM as

πM
∗ = πF

∗
i∗

Eu(NF )

This is the Atiyah-Bott integration formula [9]∫
M

α =

∫
F

i∗α

Eu(NF )

and since F is a set of isolated points, it is equivalent to (1.2) in our case.
This first-principles calculation of N = 2 super Yang-Mills on R4

ϵ1,ϵ2
can then be

done once the moduli space is described.

1.3.1 The ADHM construction
There is a constructive approach to n-instanton solutions on S4 for classical gauge
groups, called the ADHM construction, first tersely presented in [10]. Dimension
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counting confirms that these are in fact all the solutions. Therefore, it can be used
for equivariant localisation, as in [221, 227]. Here we describe G = U(r) instantons.

Instantons in the ADHM construction are reconstructed from a quiver with a
superpotential. The two nodes of the quiver are conventionally denoted by

N = CrkG = Cr, K = Cn

a quadruple of linear maps

(B1, B2, I, J), B1,2 ∈ End(K), I ∈ Hom(N,K), J ∈ Hom(K,N)

and the moment maps, the vanishing of which are usually called the ADHM equa-
tions,

µR = [B1, B
†
1] + [B2, B

†
2] + II† − J†J

µC = [B1, B2] + IJ

There is an action of GL(K) = U(n), called the dual group G∨ in this context, so
that

g . (B1, B2, I, J) = (AdgB1,AdgB2, gI, Jg
−1), g ∈ U(n) (1.3)

and the action of the torus T which includes spatial rotations is

t . (B1, B2, I, J) = (t1B1, t2B2, It
−1
3 , t1t2t3J), t1,2 = eϵ1,2 ∈ C×, t3 = ea ∈ U(1)r

The instanton moduli space is then defined as the hyperkähler quotient

Mn,r = {(B1, B2, I, J)|µR = 0, µC = 0}///G∨

and it can be checked by simple component counting that its complex dimension is
2rn. The actual instanton is constructed from the Dirac operator, with z1,2 ∈ C

D† =

[
B1 − z1 B2 − z2 I

−B†
2 + z∗2 B†

1 − z∗1 −J†

]
Namely, we pick a zero mode Ψ ∈ kerD† normalised to unity, and the ADS con-
nection is then simply A = Ψ†dΨ, and all the necessary properties follow from the
ADHM equations.

The same construction can be derived from brane dualities in type II string
theory [77, 78, 107, 159, 264, 271]. Namely, consider N coincident Dp branes along
with k D(p − 4) branes (p ≥ 3). The stack of parallel Dp-branes is described by
p+1 dimensional U(N) super Yang-Mills theory with 16 supercharges, since fixing
of the branes breaks half of the supersymmetry. This is coupled to 9 − p adjoint
scalars which describe the position. The D(p − 4) branes can be outside the Dp
stack (Coulomb branch) or stuck inside the Dp worldvolume (Higgs branch), or
mixed. It turns out, however, that the mass and charge of the trapped D(p − 4)
brane matches with an instanton in the Dp stack’s worldvolume. The Ramond-
Ramond form coupling to the D(p− 4) branes for an instanton solution F = ?F of
the worldvolume theory equals the source of the D(p− 4) brane itself

tr

∫
Dp

dp+1Cp−3 ∧ F ∧ F =
8π2

e2
tr

∫
D(p−3)

dp−3Cp−3
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The ADHM variables (B1,2, I, J) can be identified in turn with open strings connect-
ing D(p− 4)-D(p− 4), Dp-D(p− 4), and D(p− 4)-Dp branes (Chan-Paton spaces),
and the ADHM equation is the BPS condition for preserving supersymmetry. For
p = 0 one is left with ordinary quantum mechanics, although properly speaking we
need higher p to ensure the existence of a moduli space.

This is the whole moduli space. To see why fixed points under the torus action
are labelled by Young diagrams, a good piece of intuition comes form comparing
this moduli space to the Hilbert scheme of points. This also gives us an insight
into how to regularise the moduli space. A Hilbert scheme is, in general, a moduli
space of subvarieties, and its definition is one of a representable object of a functor.
Namely, for a projective scheme X over a field k = k̄, the Hilbert scheme HilbX

is characterised by the property of the set of k-scheme morphisms Hom(U,HilbX)
being in bijection with closed k-subschemes Z ⊂ U × X such that the induced
projection Z → U is flat, and that this is functorial. For U = Spec(k), Z are
really all the closed k-subschemes. Next define, for p ∈ Q[t], Hilbp

X as the same
construction but only with those Z with Hilbert polynomial p3. Then the Hilbert
scheme of n points in X is

(X)[n] = Hilb
p(t)=n
X

that is, with constant Hilbert polynomial p(t) = n ∈ N. In general, there is a
Hilbert-Chow morphism (X)

[n]
red. → SymnX which is birational for dimCX ≤ 2.

For curves, (X)[n] = SymnX, while for nonsingular surfaces, the Hilbert-Chow
morphism is a resolution of singularities by a theorem of Fogarty. The singularities
themselves occur when points are stacked on top of one another, and in dimension
one the only datum to describe this is the multiplicity, while in higher dimensions
the directions of the limiting process of collision have to be described as fuzzy points.
Here we fix our attention to surfaces. Here we follow Theorem 1.14 in [214]. For an
ideal I, let VI = C[z1, z2]/I. Then, as sets,

(C2)[n] = {ideals I ∈ C[z1, z2]| dimVI = n}

Define B1,2 ∈ End(VI) as multiplication by z1,2, and IHom(C, VI) as the unit. Fix
VI ∼= Cn. We have [B1, B2] = 0 and VI ∼= C[B1, B2]I. This leads to the equivalent
description

(C2)[n] ∼=

(B1,2, I)

∣∣∣∣ [B1, B2] = 0
Cn = C[B1, B2]I · C

(stability)

 /GL(n)

with group action analogous to (1.3), but with GL(n). Finally we get to the crux
of the matter. The moduli space of torsion free sheaves of rank r and second Chern
class n Mr,n on P2 can be described as a higher rank generalisation of the Hilbert
scheme of points,

Mr,n
∼=


(
B1,2 ∈ End(Cn), I ∈ Hom(Cr,Cn),
J ∈ Hom(Cn,Cr)

) ∣∣∣∣ [B1, B2] + IJ = 0
Cn = C[B1, B2]I · C

(stability)

 /GL(n)

3Actually, we assign a Hilbert polynomial pu to each fiber π−1(u) of the projection Z → U ,
but due to flatness this is u ∈ U independent as long as U is connected.
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with group action analogous to (1.3), but with GL(n). By proposition 2.7 in [214],
for r = 1, J = 0, so (C2)[n] ∼= M1,n. This can be shown by noting that C[B1, B2]I =
Cn, so if Jp(B1, B2)I = 0 for any monomial p, then J = 0. Induction on the degree
can be used here, with the base step JI = tr IJ = − tr[B1, B2] = 0.

Note that this definition is very similar to the ADHM data. The two main
differences are the replacement of the real moment map µR = 0 with the stability
condition, and a GL(n) quotient instead of a U(n) one. It turns out that imposing
the additional conditions and quotienting by a smaller group is almost equivalent
to forgetting the "complex structure" and quotienting by the smaller group (note
that no adjoints are present in the torsion-free sheaves description). I say almost
because there are subtle differences, see [91]. It turns out that, schematically

Mr,n = {(stability) and µC = 0}/GL(n)
∼= {µR = ζ · 1N and µC = 0}/U(n)

with ζ > 0 is a minimal resolution of the ADHM space

MADHM
r,n = {µR = 0 and µC = 0}/U(n)

For r ≥ 2, the smooth locus of MADHM
r,n is the set of simultaneously stable and

co-stable (ie such that K = C[B†
1, B

†
2]J

†N) solutions, which don’t exist for r = 1
since there are no U(1) instantons. Therefore, we have a resolution of the original,
singular ADHM space. How can we ensure not to pick up additional contributions
coming from the exceptional divisors? Both spaces are symplectic manifolds. When
localising on the torus-invariant solutions, however, Nekrasov uses the symplectic 2-
form of MADHM

r,n lifted on the resolved space Mr,n, which vanishes on the exceptional
divisor by definition, and not the symplectic form of the resolved space itself [221,
p. 18].

Besides stumbling upon the correct regularisation of the instanton moduli space,
the Hilbert scheme of points approach lets us describe the fixed points under the
torus action. We already saw that B1,2 are a lift of multiplication by z1,2. Cor-
respondingly, spatial rotations act as B1,2 → eϵ1,2B1,2. By the stability condition,
ideals are {f(z1, z2) ∈ C[z1, z2]|f(B1, B2) = 0}. The torus action lifts to the ideals,
so that f(z1, z2) 7→ f(eϵ1z1, e

ϵ2z2) = eaϵ1+bϵ2f(z1, z2) are fixed points. These are
monomials. However, all monomial ideals can be described by Young diagrams.
Drawing a Young diagram λ on the Z2

>0 plane, the we have an isomorphism

I 7→ λ(I) = {(i, j)|zi1z
j
2 /∈ I}

λ 7→ I(λ) = {zi1z
j
2|(i, j) /∈ λ}

and clearly the requirement dimC[z1, z2]/I = n translates to the Young diagram
having a total of n boxes.

This intuition turns out to be correct. Again, we have a regularised, compact4

moduli space, and we want to apply equivariant localisation which only picks up
torus-fixed points of the ADHM moduli space. Then we can apply the Duistermaat-
Heckman formula. The torus-fixed points are such that they stay on the same U(n)
orbit, so by writing g = eϕ ∈ U(n), t3 = ea ∈ U(r) we get to first order

[φ,B1,2]− ε1,2B1,2 = 0, φI − Ia = 0,−Jφ+ (a− ε1 − ε2)J = 0

4By adding point-like instantons via the Uhlenbeck-Donaldson compactification, as described
earlier.
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As we already noted, a has to be diagonal, and this can always be arranged by a
U(n) adjoint action. If we decompose I = ⊕Ii, J = ⊕Ji with respect to the action
of the same torus, the last two equations φIj = Ijaj and Jjφ = Jj(aj − ε1 − ε2) say
Ij, Jj are left and right eigenvectors of φ. Since

JiIj = Ji
1

aj
φIj =

ai − ε1 − ε2
aj

JiIj

JI = 0 at the fixed points with general epsilon parameters, and [B1, B2] + JI =
[B1, B2] = 0 commute. The monomials fixed under the torus action are the eigen-
vectors

φ(Bs1
1 B

s2
2 Ii) = (ai + s1ε1 + s2ε2)B

s1
1 B

s2
2 Ii

so we have r Young diagrams {λj}rj=1, one for each Ij, parametrising the fixed point
As for applying the Duistermaat-Heckman formula, we need the Euler class of the
tangent bundle to these fixed points. To add matter to the mix, we need additional
bundles [56]. The derivation has been very thoroughly redone in §1.9 and appendix
B of [172]. Originally, it was sketched in [189, 221], done rigorously in Theorem 2.11
of [216] similarly as Proposition 5.7 of [214] and expanded to other groups in [253].
The characterisation consists in taking a fixed instanton solution Aµ and deforming
it to another ASD connection Aµ + δAµ. Then trivial gauge transformations are
discarded by looking at the Atiyah-Singer complex

Ω0(C2)× g → Ω1(C2)× g → Ω2,+(C2)× g

where the first arrow is an infinitesimal gauge transformation ε 7→ ∇Aε and the
other is the linearised ASD condition δA 7→ ∇+

AδA, and rewriting it in terms of the
ADHM data, with the first arrow again an infinitesimal gauge transformation and
the second linearised ADHM δµC. The character at the fixed point labelled by a
tuple of Young diagrams ~Y is

ChTY⃗Mr,n =
r∑

i,j=1

Ni,j(t1, t2)

where t1,2 = eϵ1,2 and

Ni,j(x, y) = eaj−ai

∑
c∈Yi

x−lYj (c)yaYi (c)+1 +
∑
c∈Yj

xlYi (c)+1y−aYj (c)


Actually, given the character of a bundle in the form ChE =

∑
i nie

xi , we can
convert it to 4, 5 or 6 dimensional formulas by using the index operator defined as

I(E) =
∏
i

[xi]
ni , [x] =


x R4

ϵ1,2

1− e−x R4
ϵ1,2

× S1

θ(e−x|τ) R4
ϵ1,2

× Tτ

for theories with 8 supercharges on the indicated spaces, so we can get a lot of
mileage from these calculations.

We note that besides this calculation, which realises instantons as the Higgs
branch of branes within branes, there is a more recent construction in terms of the
Coulomb branch of 3d theories with 8 supercharges [66], resulting in a different kind
of quiver.
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1.3.1.1 qq-character

A related question is what happened to the Seiberg-Witten curve when the Omega-
deformation is turned on. It was noted in the context of the BPS/CFT correspon-
dence [222, 223] that Schwinger-Dyson identities imply that

y(x) = 〈Y (x)〉,

the Y -operator is the generating function of the chiral ring operators, satisfies the
equation

y(x) +
1

y(q−1x)
= PN(x|ε1, ε2), q = eϵ1+ϵ2

here concretely for the A1 quiver theory. The entity on the left hand side is called the
qq-character, since it is reminiscent of the SU(2) fundamental character χ = y+1/y.
The right hand side is a degree N polynomial in x. In the NS limit, this means
that the Seiberg-Witten curve is a difference equation, equivalent to a deformed
TQ-relation for an XXX spin chain in d = 4 [226].

1.3.2 Nekrasov functions
Here we review the end results, the Nekrasov partition function of interest for this
work [56, 88]. Given two partitions Y1 = (k1 ≥ k2 ≥ ... ≥ kl > 0), Y2 = (k̃1 ≥ k̃2 ≥
... ≥ k̃l̃ > 0) and a cell c = (i, j) ∈ Y1 we define the auxiliary functions

φ(a, c) = a+ ε1(i− 1) + ε2(j − 1)

ξ(a, b, Y1, Y2, c) = a− b+ ε1(leg(c, Y1) + 1)− ε2(arm(c, Y2))

the last of which, a deformed hook length, uses arm(c, Y ) = ki−j, leg(c, Y t) = kj−i,
and finally set

E(a, b, Y1, Y2) =
∏
c∈Y1

ξ(a, b, Y1, Y2, c) (ε1 + ε2 − ξ(a, b, Y1, Y2, c))

1.3.2.1 The classical gauge groups SU(n), SO(2n+ χ), Sp(n)

In the following we consider n partitions (Y1, ..., Yn) = ~Y with the total number of
boxes k. Then the equivariant volume of the k instanton moduli space for U(n) is
given by

ZSU(n)(~Y ) =
n∏

i,j=1

(E(σi, σj, Yi, Yj))
−1 (1.4)

Z
SU(n)
k =

∑
|Y⃗ |=k

ZSU(n)(~Y )

and SU(n) is obtained by restricting to the
∑

k σk = 0 slice. For the orthogonal
groups, if χ ∈ {0, 1},

Z
SO(2n+χ)
k =

∑
|Y⃗ |=k

n∏
i=1

∏
c∈Yi

4(φ(σi, c))
2χ(4φ(σi, c)

2 − 1)2∏n
j=1E(σi − σj, Yi, Yj)2E(−σi − σj, Y t

i , Yj)E(σi + σj, Yi, Y t
j )

(1.5)
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The combinatorial expressions for Sp(n) are more involved. Namely, one has to
multiply (1.5) by extra factors depending just on the Ω-background parameters5. A
combinatorial solution is proposed in [170], the issue can also be approached using
Jeffrey-Kirwan residues as in [218]. For the self-dual background we can simplify the
latter procedure via a ε1,2 = ±1∓ i0 prescription which renders the pole structure
easier to handle. Namely, in that case we need to define two-indexed functions
Z

Sp(n)
2k,l such that

Z
Sp(n)
2k,0 =

∑
|Y⃗ |=k

n∏
i=1

(∏
c∈Yi

4(φ(σi, c))
2(4φ(σi, c)

2 − 1)2

)−1

×

(
n∏

j=1

E(σi − σj, Yi, Yj)
2E(−σi − σj, Y

t
i , Yj)E(σi + σj, Yi, Y

t
j )

)−1

and then the fractional instanton contributions are given as

Z
Sp(n)
2k,1 =

1

2
Z

Sp(n)
2k,0

n∏
i=1

1

−σ2
i

∑
|Y⃗ |=k

∏
c∈Yi

φ(σi, c)
4

(φ(σi, c)2 − 1)2

Z
Sp(n)
2k,2 =

1

8
Z

Sp(n)
2k,0

n∏
i=1

1

(σ2
i − 1/4)2

∑
|Y⃗ |=k

∏
c∈Yi

(φ(σi, c)
2 − 1/4)2

(φ(σi, c)2 − 9/4)2

Z
Sp(n)
2k,3 =

1

144
Z

Sp(n)
2k,0

n∏
i=1

1

(−σ2
i )(σ

2
i − 1/4)2

∑
|Y⃗ |=k

∏
c∈Yi

φ(σi, c)
4(φ(σi, c)

2 − 1/4)2

(φ(σi, c)2 − 1)2(φ(σi, c)2 − 9/4)2

+
1

72
Z

Sp(n)
2k,0

n∏
i=1

1

(−σ2
i )(σ

2
i − 1)2

∑
|Y⃗ |=k

∏
c∈Yi

(φ(σi, c)
2 − 1)2

(φ(σi, c)2 − 4)2

where the summands in the last expressions are due to V = T 1/2 + 1 + T−1/2,
V2 = T +1+T−1 and V = T 1+1+T−1, V2 = T 2+1+T−2 contributions to be put
in the character (4.16) of [93], which can be continued further easily. This finally
enables one to compute

Z
Sp(n)
k =

∑
2m+l=k

Z
Sp(n)
2m,l

and it agrees with appendix B of [193]. Further, we can add fundamental matter
by adding a factor of

Nf∏
i=1

n∏
j=1

∏
c∈Yj

(
φ(σj, c)

2 −m2
i

)
in the numerators.

5In the brane realisation of instanton counting these are usually dubbed fractional instantons,
stuck at the orientifold plane [93].
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1.3.2.2 SU(2) with fundamental matter

Given the partitions Y1,2,W1,2 we can define

Zbifund.(a1, a2, Y1, Y2, b1, b2,W1,W2,m) =
2∏

i,j=1

∏
c∈Yi

(ξ(ai − bj, Yi,Wj, c)−m)
∏
c∈Wj

(ε1 + ε2 − ξ(bj − ai,Wj, Yi, c)−m)

Further we define,

Zadj.(a1, a2, Y1, Y2) = Zbifund.(a1, a2, Y1, Y2, a1, a2, Y1, Y2, 0)
−1

Zfund.(a1, a2, Y1, Y2,m) =
2∏

i,j=1

∏
c∈Yi

(φ(ai, c) +m)

Then for SU(2) with Nf fundamental flavors we have

Zk(σ) =
∑

|Y1|+|Y2|=k

∏Nf

i=1 Zfund.(σ,−σ, Y1, Y2,mi)

Zadj.(σ,−σ, Y1, Y2)

To obtain U(2), replace (σ,−σ) with (σ1, σ2) in the above.

1.3.3 Universal one instanton formula
It was found in [24] that an instanton of topological charge 1 may be constructed by
means of an sl2 triple corresponding to a long root. This was used to calculate the
1-instanton corrections to the Seiberg-Witten curve [151]. Besides this embedding
in the internal degrees of freedom, the instanton has a C2 of moduli specifying its
position, therefore the holomorphic functions on this product space is a U(1)ϵ1 ×
U(1)ϵ2 ×W -module. It is precisely its character that the 5 dimensional uplift of the
theory will be calculating, and the 4 dimensional formula may be seen as its "Weyl
dimension" analogue, and in

Λ2h∨
Z1 = − 1

ε1ε2

∑
β long

1

(ε1 + ε2 + β · a)(β · a)
∏

α·β∨=1

(α · a)

7→
∑
β long

1

(β · s)2
∏

α·β∨=1

(α · s)
(1.6)

rewritten in ε-units [170]. Comparisons with ADHM calculations [93, 193, 227] tend
to reveal some sign differences, e.g. ZBn,Cn

1 |(1.6) = −ZBn,Cn

1 |ADHM, which is why the
rescalable instanton counting factor of Λ ought to be kept in mind.

1.3.4 Blowup equations
The instanton moduli spaces for exceptional groups lack an ADHM description
since their fundamental representation is different from their defining one. Thus to
compute higher instanton terms one cannot resort to the usual localisation tech-
niques. An alternative approach, besides the one discussed in this work, is by
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blowup equations, although these do not give compact expressions such as (1.6).
Roughly speaking, blowup relations relate the partition function on the blown-up
geometry to the blowdown. The origin z1 = z2 = 0 of C2 is replaced by the excep-
tional divisor, which exchanges the origin as a fixed point to the north and south
poles of the divisor, each an ordinary Nekrasov partition function, with their vevs
determined by a Z-worth of gluing conditions at the equator [48, §2]. Further, flux
can be turned on through the exceptional divisor itself and its d-fold product, giving
an observable Ẑd. This observable can be related to the ordinary Nekrasov function,
or vanish. A terrific review of how far-reaching the consequences of these relations
are, see my older academic brother’s thesis [258]. Generalizing the d = 4 expression
in [216] to general gauge groups as was done for d = 5 in [170], except noting that
in d = 4 the partition function with flux on the exceptional divisor vanishes – so
Ẑd=0 = Z but Ẑd≥1 = 0 – we obtain

Zn(ε1, ε2, s) =
1

n2ε1ε2

∑
1
2
m2+i1+i2=n

m∈Q∨, i1,2<n

(
ε1i1 + (ε1 + ε2)i2 +m · s+ 1

2
m2(2ε1 + ε2)

)
L(ε1, ε1 + ε2, s,m)

(
ε1i1 + (ε1 + ε2)(i2 − n) +m · s+

1

2
m2(2ε1 + ε2)

)
Zi1(ε1, ε2, s+ ε1m)Zi2(−ε2, ε1 + ε2, s+ (ε1 + ε2)m) (1.7)

starting from Z0(ε1, ε2, s) = 1, where L(ε1, ε2, s,m) :=
∏

α∈R `(ε1, ε2, s,m,α) and

`(ε1, ε2, s,m,α) =



∏
i,j≥0

i+j≤−m·α−1

(−iε1 − jε2 +m · s), if m ·α < 0,

∏
i,j≥0

i+j≤m·α−2

((i+ 1)ε1 + (j + 1)ε2 +m · s), if m ·α > 1,

1 otherwise.
(1.8)

Since we are interested in the self-dual background, we see that naively taking it
leads to some singular terms in the summands due to the NS limit getting involved,
so care must be taken to first preform the summation and then to take the limit.
In particular, one can take ε1 = 1 + δ, ε2 = −1 and then safely send δ → 0 in the
final expression.

Note that blowup equations naturally provide a link between the self-dual and
the N.S. Omega-background. This is important from the point of view of exact
quantisation [115], surface operators [224] as well as c = ∞ irregular conformal
blocks [106]. They also provide a link between the self-dual and the c = −2 back-
grounds, which can be used to derive Painlevé III3 in tau form [32] as well as the
N = 2∗ tau system [25]. The reader may wish to investigate these links further.

1.4 The Seiberg-Witten/Integrable system corre-
spondence

Recall that the Seiberg-Witten solution gives the Coulomb branch of N = 2 d = 4
theory the structure of an elliptic fibration, Jac(ΣSW) → B. This is explicitly an
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integrable system. After the first SW curves for G = SU(N) were found [7, 179], in
[111] it was noted which integrable system it corresponded – the N -periodic closed
Toda chain. In fact, the curve (1.1) can be written as the spectral curve

det(L(z)− w) = 0

where L(z) is the Lax operator

L(z) =


p1 e

q2−q1
2 0 . . . ze

q1−qN
2

e
q2−q1

2 p2 e
q3−q2

2 0

0 e
q3−q2

2 p3
. . .

... 0
. . . . . .

1
z
e

q1−qN
2 pN


This was generalised for any semisimple G to a Toda chain based on GL [71, 72, 73].
If adjoint matter is present, then the system is elliptic Calogero-Moser [75, 197], and
if fundamental matter is present, it is an inhomogenous periodic XXX spin chain
[112]. Dimensions can also be increased – see [114] for an overview.

In [75] a link with Hitchin systems was shown. This is elucidated by the class
S construction, where these theories are obtained by compactifying a topologi-
cally twisted d = 6 N = (2, 0) theory on M4 × C. The original theory contains
adjoint-valued scalars, and only one survives the twist, and it can be viewed as
a holomorphic adjoint-valued one-form Φzdz on C [99]. The Coulomb branch is
parametrised by its higher traces, and a curve detAdj.(λ−Φz) = 0 can be obtained,
which corresponds to the SW curve.

1.4.1 Integrable systems and the spectral transform
The Donagi-Witten integrable system is a general feature of Coulomb branches, and
most of my work has to do with isomonodromic deformations, which are generalisa-
tion of integrable systems. Here we have in mind classical integrable systems, as the
study of quantum ones tends to be quite orthogonal to the classical counterparts.
A good introduction is [81]. There are several perspectives on integrable systems.

1.4.1.1 Liouville integrability

The most standard one is Liouville integrability via the Hamiltonian perspective.
Namely, we consider a 2n-dimensional phase space M with a non-degenerate closed
2-form ω = hijdxi ∧ dxj in some chart. Introduce a Hamiltonian function H :
M → C in the usual way via a vector flow ∂H , dH = i∂Hω along with a Poisson
bracket on the sheaf of continuous functions C(M) on M , which is a nondegenerate
antisymmetric C-derivation {., .} : C(M) × C(M) → C(M) which satisfies the
Jacobi identity. In this case it looks like {f, g} = hij∂xi

f∂xj
g, so that the time

evolution with respect to the Hamiltonian H is ḟ = {H, f}. Liouville integrability
then means we can find n independent functions Fi in which Poisson-commute with
H and are all in involution, {Fi, Fj} = 0. Locally, we can always introduce Darboux
coordinates qi, pi such that ω =

∑
i dpi∧dqi and {pi, qj} = δi,j, {pi, pj} = {qi, qj} =

0, but Liouville integrability is a global statement. As such, the symplectic leaves
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Fi = constant folate the phase space. These leaves have the topology of an n-
dimensional torus, and we can choose the so-called action-angle variables which
correspond to flows around the cycles of the torus: the action variables are just the
periods of the fundamental (Liouville) form θ, dθ = ω, and the angle variables are
their conjugates. The motion is then free.

The construction we described is very much modelled on the cotangent bundle
T ∗M . Before going on, this would be a suitable place to introduce another example
of a symplectic space, coadjoint orbits. Let G be a connected finite dimensional
Lie group with Lie algebra g = Lie(G). If g∗ is its dual6 algebra with pairing
(., .) : g∗ × g → C, then the adjoint action Ad : G × g → g, Adgx = gxg−1, and
the coadjoint action is defined via the paring 〉Ad∗

gx, y〉 = 〈x,Adgy〉. A coadjoint
orbit invariant under the Ad∗ action Op = {Ad∗

gp|g ∈ G, p ∈ g∗} can be associated
to any p ∈ g∗. What is interesting about these spaces is that they’re all canonically
symplectic. If the corresponding infinitesimal version of the coadjoint action is ad∗,
so that 〈ad∗(Z)x, y〉 = −〈x, ad(Z)y〉 = −〈x, [Z, Y ]〉, giving a representation of g in
g∗, then the natural symplectic form is defined by ωp(ad∗(x), ad∗(x)) = 〈p, [x, y]〉.
By proposition 1 in [174, §1], this form, called the Kostant-Kirillov symplectic form
ω on Op is the derivative of < p,Θ >, where Θ = g−1dg is the Maurer-Cartan form.
With some abuse of notation, we can write ωKK = 〈pg−1dg ∧ g−1dg〉. On g∗ itself,
the Poisson bracket is {Xi, Xj} = ckijXk with ckij the structure constants of g. Far
from being abstract, this construction actually gives a purely classical counterpart
of a spin-n/2 particle. A two-dimensional sphere S2 with quantised volume n+1 and
the standard symplectic form can be seen as a coadjoint orbit of su2, the geometric
quantization of whose n-dimensional unitary irreducible representation gives exactly
the spin-n/2 particle.

The great value of this construction to integrable systems comes from reformu-
lating the bracket to a factorisation problem g = g+ ⊕ g− into subalgebras along
with centrally extending G to the loop group L0+G = G[[λ]], λ ∈ C×. Consider G
as a matrix group for concreteness. The dual loop group is then L−G = λ−1G[[λ−1]]
with pairing

〈
∑
n<0

xnλ
−n,
∑
m≥0

ymλ
m〉 = trResλ=0

∑
n<0,m≥0

xnymλ
m−n =

∑
n

xny−1−n

Then it’s clear that for this explicit bracket and any g ∈ L0+G, 〈x,Adgy〉 =
〈gxg−1, y〉 = 〈(gxg−1)−, y〉 where (.)− projects to negative powers of λ, so that

Ad∗
gx = (gxg−1)−

Soon we will be looking at the similar case where L(λ) ∈ OA, A ∈ L−G, and the
infinitesimal flow on the coadjoint orbit is

L̇(λ) = ad∗(M)L = [M(λ), L(λ)] (1.9)

which we will call the Lax equation. Besides the actual dynamics, we note that the
L0+G and L−G as we have described them actually fit together into what is usually
called the loop group LG = L0+G⊕ L−G ∼= Hom(S1, G). As such, this splitting is
related to the problem of factorisation of loops, which can further be reformulated

6Not in the Langlands’ sense.
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as a Riemann-Hilbert problem [242]. A classical result is Birkhoff factorisation: any
loop γ ∈ LGLn can be factorised as

γ = γ− · za · γ+

where γ± ∈ L±GLn(C) and za is in the maximal torus i.e. of the form za =
diag(za1 , ..., zan). Loops with za = id form a dense open subset of the identity
component of LGLn, and the multiplication L−

1 ×L+ → LGLn|that subset is a diffeo-
morphism, where L−

1 = L−|γ(∞)=1.
A beautiful consequence of this factorisation of use in section 1.5.3 is the classical

Grothendieck’s theorem on holomorphic vector bundles on P1. Namely, to construct
a rank n holomorphic vector bundle, cover S2 ∼= P1 with two opens S2 = U+ ∪ U−,
U± = {z ∈ C : |z| ⋛ 1}. On U± any bundle is trivial and is locally U± ×Cn. Loops
come in when we look at the holomorphic transition functions γ : U+ ∩U− ∼= S1 →
GLn. Therefore, rewrite γ = γ− ·za ·γ+. If we change coordinates on U+×Cn by γ+
and by γ−1

− on U− ×Cn, the transition function is just za, and so any holomorphic
degree n vector bundle on P1 splits as O(a1)⊕ ...⊕O(an).

1.4.1.2 Lax pairs and the spectral transform

What many people have in mind when they think of classical integrable systems,
however, are solitons, the localised, dispersionless travelling wave solutions of non-
linear wave equations. This is an infinitely dimensional phase space, and for the
shape of a wave to be preserved, intuitively we see the need for infinitely many
conserved quantities, consisting of derivatives of all orders which we need to specify
its shape7. That they be in involution is, however, not an obvious requirement.
Further, as the consequence of them being in involution, any one of them defines
its own independent flow, so we end up with an infinite hierarchy of flows.

An alternative approach to integrability has the ability to subsume these kinds
of systems without going into the subtleties of infinite-dimensional symplectic man-
ifolds is based on the Lax equation (1.9). We can solve it immediately:

L(t) = g(t)L(0)g(t)−1, M(t) = g(t)−1dg(t)

dt

Therefore, integrals of motion are given by traces of powers of L. By itself, this can
be written as a compatibility condition of the following equations, if the functions
Ψ exist such that

L(λ, µ)Ψ(λ, µ) = µΨ(λ, µ), ∂tΨ(λ, µ) =M(λ, µ)Ψ(λ, µ)

with µ t-independent. This reformulation leads to what I will call Krichever’s
definition of integrable systems, which is compatibility conditions of overdetermined
systems of linear equations.

The spectral parameter λ is very important. In the setting of (1.9), it came from
the loop group. In general, matching powers of λ, we find a host of nondynami-
cal, constraint equations on M(λ), coming from those terms of the commutator

7Historically, for the KdV soliton this was very much not obvious, especially as only three were
found directly related to some symmetry of the equation, and some speculated there can be no
more than seven conserved quantities [67, §3].
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unmatched with L̇(λ). This reflects a general principle of integrability being given
in terms of flat connections with constraints.

The Lax pair can in principle be given by any linear operators. Consider for a
moment the finite dimensional case of an r× r matrix L(λ). We define its spectral
transform as the algebraic curve

{det(µ1r − L(λ)) = 0} ⊂ C2

It is an r-fold covering of the µ plane, whereas the λ-plane this depends on L(λ).
It is also possible to invert the spectral transform. Given an r-sheeted genus g
hyperelliptic curve Γ with an effective divisor D of degree g + r − 1, consider the
linear system £(−D). By Riemann-Roch, its dimension is r if generic, so take a
basis ψi ∈ £(−D) and normalise it at some point ψi(P ) = 1. Consider points
Pi = (λ, µi) with the same base point λ, and form the matrix ψ̂ = ψi(Pj). Then
it can be shown that L(λ) = ψ̂(λ)diag(µ1, ..., µr)ψ̂(λ)

−1 is well-defined on the base
curve [14, §5.2].

The question of how to describe the KdV hierarchy in Lax form and assign it
a spectral curve is more subtle. First of all, the KdV hierarchy can be seen as a
reduction of the more general KP hierarchy, so I will describe this more general
case. KP is quite special as it, in fact, governs all possible isospectral deformations
of a linear operator, by Mulase’s theorem.

The KP hierarchy therefore has deep connections to algebraic curves - many
of the first known soliton solutions were given in terms of elliptic functions on a
seemingly unrelated, emergent curve, and a more general theory was developed by
Krichever [181], the systematisation of which can be found in the textbook [21].
Mulase explains this in his excellent review [213]. Namely, every ordinary differ-
ential operator defines an algebraic curve from its set of eigenvalues with resolved
multiplicities, with the eigenspace as a vector bundle on this curve. Isospectral
deformations by definition only deform this vector bundle and keep the base space
fixed, and Mulase shows that the moduli of these deformations are isomorphic to
the Jacobian of the spectral curve.

Namely, if P = ∂nx + ... is a linear differential operator of degree n, and we want
to evolve it using a certain set of times t = (t1, ..., tm), so that

P (t)φ(x, t) = λφ(x, t)

then if L(t) = ∂x + u2(x, t)∂
−1
x + ... is a pseudo-differential operator such that

L(0)n = P (0) and L(t) solves the KP hierarchy,

∂tiL(t) = [Qi(t), L(t)], Qi(t) = (Li(t))+,

where (.)+ projects to positive powers of ti’s only, then P (t) = L(t)n solves the
isospectral problem. We can also get the explicit KP wave equation

3/4uyy − (ut − 1/4uxxx − 3uux)x = 0

from the i = 2 and 3 terms of this hierarchy by identifying u2 = u, t2 = y and t3 = t
and eliminating u3 and u4. So, in this case, we have a curve det(λ · id− P ) = 0.
KdV is, in this treatment, the even-time independent system with P = ∂2x − u.

This is the general situation: the Lax operator defines a spectral curve with a
vector bundle, and the "original" motion is then interpreted as free motion on the
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Jacobian of the spectral curve. The Jacobian is, of course, a torus, so this provides
Liouville integrability by construction.

There are more curves we can assign to KP. The differential operators Qi satisfy
the zero-curvature condition coming from the commutativity of the flows, [∂ti , ∂tj ],
namely

∂tiQj − ∂tjQi = [Qi, Qj]

and therefore, if our solution is independent of some fixed time tj, we get the Lax
equation ∂tiQj = [Qi, Qj], which means the spectral curve {det(κ · id−Qj) = 0} is
independent of all the times.

Instead of the Hamiltonian approach, at this point we prefer the Lax pair ap-
proach. With the introduction of the Lax function, namely, our theory of classical
integrable systems gains a lot of expressiveness, as we can not only express in one
fell swoop systems like

L(z) =


∑

i
ui

z−zi
in 0+1,

−∂2x + u(x, t) in 1+1,
∂y − ∂2x + u(x, y, t) in 2+1 dimensions

the latter two examples being the parts of the KdV and the KP hierarchies that cor-
respond directly to the eponymous wave equations, L(z)|here = (L2(t))+|before = Q2,
but also immediately tie it to algebraic curves via the spectral transform, L(z) ⇝
{det(L(z)− κ · id) = 0}.

1.5 String theory realisations
Dirichlet boundary conditions can be introduced to the fundamental superstring’s
worldsheet theory, forcing its ends to be fixed in space. In the target space,
10− (p+1) of these conditions restrict the endpoints to lie on a (p+1)-dimensional
submanifold of R1,9. This defines an extended object, the Dp-brane, whose fixed
existence breaks a certain amount of Poincare invariance, and by extension, super-
symmetry. By quantising the oscillator modes of these kinds of strings, its massless
spectrum can be seen to be given by a vectormulitplet. In the maximal D9-brane
case, which breaks the supersymmetry in half to 32/2 = 16 supercharges, we have
the maximally supersymmetric d = 10 N = 1 vectormultiplet, which consists of a
vector field Aµ and a Majorana-Weyl spinor of positive chirality ψ [165, §2]. Branes
with p < 9 can then be reached by dimensional reduction. Ignoring the fermions,
the main point is that we end up with a vector field Aµ in the bulk, µ = 0, ..., p,
while the transverse directions are reduced to 10 − (p + 1) scalars which describe
the position of the brane. A similar mechanism occurs for charged extended objects
in general, outside string theory [256, §5.8,5.9].

The worldvolume theory of Dp-branes is given by an effective action consisting
of a Dirac-Born-Infeld plus a Wess-Zumino term. To lowest order in the string
length `2s, this reduces to the standard8 super Yang-Mills action describing the
vectormultiplet dynamics. The gauge theory coupling is related to the string length
and string coupling as g−2

YM = `3−p
s g−1

s .
8This is for a single brane and describes abelian theory – the non-abelian DBI action is not

known.
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All this is to say that arrangements of weakly-gravitating Dp-branes can be used
to realise the appropriate gauge theory, also in any needed phase. This enables us
not only to geometrise all the gauge theory datum, but also gives us access to string
theory dualities, which act functorially on the gauge theory.

A word of caution is needed about higher dimensional gauge theories. By a
naive dimension counting argument, since the gauge field Aµ has mass dimension
[M (d−1)/2] in d dimensions, the gauge coupling has [g−2] = [Md−4]. This means
that for d > 4, the theory is nonrenormalisable, and should be seen only as an
effective theory. The theory can, however, violate the initial assumption of having
a gauge-theory interpretation at all scales – for instance, if in the UV regime the
theory is strongly coupled. Therefore, it is possible that there is an interacting UV
fixed point. Scale invariance on a quantum level by usual lore means conformal
invariance [219]. In six dimensions, there are three such superconformal theories,
N = (2, 0), N = (1, 1) and N = (1, 0). The first two have 16 supercharges, and turn
out to be related to a different kind of brane, the NS5-brane, whose worldvolume
they describe. They are respectively chiral and non-chiral, and occur in type IIA
and IIB string theory respectively.

This section is mostly based on the excellent review [107].

1.5.1 IIA: Hanany-Witten
The type of string theory studied determines which Dp-branes are available. Het-
erotic string theory, for example, has none, and type I string theory can be seen as
type II string theory with orientifolds. To engineer d = 4 gauge theory, we need a
d-dimensional worldvolume, and to have 8 supercharges, we need 2 perpendicular
stacks of parallel branes, as each stack halves the amount of supersymmetry. As a
general rule, the effective field theory content is governed by the lightest objects in
the setup – the lowest-dimensional branes.

The fundamental string is by definition allowed to end on any Dp-brane. How-
ever, by using T and S dualities, this can be seen to be dual to branes ending on
other branes.

In the original Hanany-Witten setup, d = 3 gauge theory was constructed, but
the setup can be easily generalised to d = 4. The theory is type IIA and the
lightest objects in this setup are D4-branes extending in the 0, 1, 2, 3, 6 directions.
By themselves, they engineer N = 2 d = 5 gauge theory. However, they are made
to end on a pair of parallel NS5 branes, extending in the 0, 1, 2, 3, 4, 5 directions and
fixed on x61 and x62 = x61 + L. The extension of the D4-branes in the 6-th direction
is therefore just the interval [x61, x62] of length L.

If L→ 0 is small, since the fluctuations of the D4-brane along the 6-th dimension
have momentum proportional to 1/L, they decouple – this is the Kaluza-Klein
mechanism. The d = 4 coupling is g−2

4dYM = Lg5dYM = L(`sgs)
−1. On its own, a D4-

brane’s bosonic massless sector, extending in the 0, 1, 2, 3, 6 directions, is described
by a gauge field Aµ, µ = 0, 1, 2, 3, 6 and five scalars φi. Dimensional reduction on
the 6-th direction reduces this to a d = 4 gauge field Aµ, µ = 0, 1, 2, 3 and six
real scalars (φi, A6). These six scalars describe the positions of the D4 branes in
the 4, 5, 6, 7, 8, 9 directions. However, in this case the D4-brane is forced to end on
the NS5-branes, which fixes the 6, 7, 8, 9 directions, and projects out the associated
scalars. Only motion along the 4, 5 directions is unconstrained. This provides the
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two real scalars needed to form a single complex scalar φ = φ4 + iφ5 in the N = 2
d = 4 vectormultiplet, with bosonic part (φ,Aµ).

That we are left with N = 2 d = 4 can also be seen by looking at how the
Lorentz symmetry breaks,

SO(1, 9) → SO(1, 3)0,1,2,3 × SO(2)4,5 × SO(2)789 ∼= SO(1, 3)× U(1)× SU(2),

the latter two groups making up the N = 2 U(2)R R-symmetry.
If we have a stack of N D4-branes, then the theory thus engineered will be

G = SU(N) super Yang-Mills. It is clear from the previous discussion that the 4, 5
positions of the parallel branes are governed by the complex scalar. The Coulomb
branch, in which this adjoint scalar has a nonzero vev, is therefore seen in this
geometric construction as simply specifying the 4, 5 positions of the parallel branes,
specifying how much apart they are.

If instead of NS5-branes we had suspended D4-branes on D6-branes extend-
ing in the 0, 1, 2, 3, 7, 8, 9 directions, we would find that the 6, 7, 8, 9 locations need
scalars to govern them, and this leaves us with exactly a N = 2 d = 4 hypermul-
tiplet, with the vectormulitplet projected out. The strings stretching from the N
D4-branes and the D6-branes mean these hypermultiplets are in the fundamental
representation of U(N). This is the Higgs branch of the theory.

We can interpolate between these two branches if we add fundamental matter to
the original construction. This can be achieved by adding two stacks of semi-infinite
D4 branes extending in the 0, 1, 2, 3 directions and along (−∞, x61] and [x62,∞) in the
6-th directions. They are, therefore, ending on the same NS5-branes. Strings going
between a stack of NL left ones and the stack of N original D4-branes will result in
hypermultiplets in the N̄L representation of the SU(NL) flavour group, and in the N
representation of the SU(N) gauge group – since the new branes are semi-infinite,
they are taken to be infinitely heavy so their fluctuations are discarded.

The 4, 5 directions of these semi-infinite D4-branes are now interpreted as the
masses.

Instead of ending at infinity, each9 new D4-brane can be taken to end at a
D6-brane which we can bring from x6 = ±∞ to a finite value. Due to Hanany-
Witten moves, these two can be seen to be equivalent. Further, under suitable
conditions, the D6-branes can go past the NS5-branes and realise the Higgs branch
we described before.

The same construction can be extended to build quiver gauge theories. Instead
of a stack of N D4-branes stretched between 2 NS5-branes, many stacks of Ni

D4-branes are arranged to hang in between consecutively placed NS5-branes, so
that the i-th and (i+1)-th stacks share a common NS5-brane. The strings stretch-
ing from the two stacks result in hypermultiplets in the bifundamental, N̄i ⊗ Ni+i

representation. Masses now have to do with the relative positions of the stacks in
the 4, 5 directions.

In all of this, to obtain a non-gravitating theory the limit `s, L → 0 with g−2
YM

fixed. Other classical gauge groups can be realised by introducing O-planes.
Notice that the entire Hanany-Witten NS5−D4 system can be seen as actually

building the skeleton of the Seiberg-Witten curve of the N = 2 d = 4 theory it is
9This is the "s-rule" which needs to hold. Namely, a D6-brane and a NS5-brane cannot be

connected by more than one D4-brane. Other configurations are not supersymmetric.
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describing. For instance, for pure SU(N), the stack of N branes can be interpreted
as an N -fold cover of the base.

1.5.2 IIB: Fivebrane webs
The previous NS5 − D4 setup becomes NS5 − D5 under T-duality [4]. Type
IIB fivebranes sit in a (p, q)-multiplet of the SL(2,Z) S-duality group, with (0, 1)
corresponding to NS5 and (1, 0) to D5. These can respectively be taken to extend
along the 0, 1, 2, 3, 4, 5 and the 0, 1, 2, 3, 4, 6 directions. As before, the effective gauge
theory has 8 supercharges – it is the N = 1 d = 5 theory, and it describes the shared
worldvolume in the 0, 1, 2, 3, 4 directions. Meanwhile, the details are encoded in the
internal dimensions. More specifically, in the 5, 6 plane.

Due to quantum-mechanical effects, a D5 brane cannot end on an NS5-brane
without it bending. Charge conservation dictates that at vertices where branes
meet, we have to impose ∑

i

pi =
∑
i

qi = 0

if we fix the orientation in the direction towards the vertex. Further, to preserve
8 supercharges, a (p, q)-fivebrane has to be stretched along a line in the 5, 6 plane
located at

x6

x5
= gs

p

q

Gauge theoretic quantities can be easily read from the fivebrane web, see [5]. Of
much interest is the polygon dual to the fivebrane web, called the grid diagram –
the process of going from the IIA brane web to the type IIB fivebrane web to the
grid in one way is illustrated in Figure1.2. In [5, §D], the authors show that if the
5-direction is turned into a circle, so the d = 5 theory in question is on R4 × S1,
and also if the 10-direction is compactified, then an M-theory realisation may be
obtained. It corresponds to an M5-brane with worldvolume R1,3 ×Σ, where Σ is a
curve inside the 4, 5, 6, 10 directions. The curve itself can be obtained from the grid
diagram If parametrised by coordinates

s = e
x6+ix10

R10 , t = e
x5+ix4

R4

it is simply given by
F (s, t) =

∑
(n,m) in grid

cn,ms
ntm

The four-dimensional Seiberg-Witten curve is recovered by taking R4 → ∞.

1.5.3 Topological string: Geometric engineering
Yet another way of obtaining d = 4 or 5 gauge theories is by geometric engineering,
which means compactifying the type IIA string theory or M-theory respectively on
a Calabi-Yau threefold X in the large radius limit and decoupling gravity [139, 168].
This is a different perspective than all the other sections, where we sought the theory
as a worldvolume theory of an extended object. Here, we want to take string theory
on R1,3 ×X and "integrate out" X.
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Figure 1.2: The Hanany-Witten NS5 −D4 setup for Nf = 4 N = 2 d = 4 SU(2)
super Yang-Mills, along with the fivebrane web featuring a possible flop, and a grid
diagram which encodes a Newton polygon.

The main idea is to consider a resolution of an ADE singularity C2/G, the ALE
space. ALE spaces are, of course, non-compact, which turns out to be a simpler
case than looking at a compact Calabi-Yau. Its exceptional divisors correspond
to simple roots of the Lie algebra g corresponding to G, and D2-branes can wrap
around them, giving us massless states corresponding to d = 6 gauge bosons, if we
compactify just on the ALE space.

To get to a d = 4 gauge theory, the ADE singularity should be fibered over some
genus-g curve Σg so that the resulting space is a Calabi-Yau threefold. The electric
and magnetic Wilson lines of the d = 6 gauge theory compactified on Σg will give
us 4g scalars, which turn out to be parts of g adjoint hypermultiplets.

In case of a torus, we get N = 4 d = 4 theory, because the fibration turns out to
be trivial, and fails to break the supersymmetry from 16 to 8 supercharges. There
is a single massless adjoint hypermultiplet, so is expected.

To further break supersymmetry, a nontrivial fibration is needed, and since we
don’t want adjoint hypermultiplets, the base is taken to be P1.

This can be generalised. For instance, consider the Riemann surface Σg to be
holomorphically embedded inside a Calabi-Yau threefold X. The tangent bundle
splits, TX|Σg = TΣg ⊕ N , and the normal bundle has to have c1(N) = 2g − 2 to
preserve the Calabi-Yau condition. Near Σg, X looks like the total space of a rank
2 vector bundle, tot(N → Σg). If Σg = P1 then by Grothendieck’s theorem from
section 1.4.1.1 the vector bundle splits into O(−a)⊕O(−2+ a) → P1. In this case,
a = 1 turns out to correspond to local P1 × P1, which engineers pure SU(2) d = 4
gauge theory.

If what is holomorphically embedded inside X is a closed surface S instead of a
curve, the analogous condition for the normal bundle is

c1(N) = −c1(TS) = c1(T
∗S) = c1(KS)

where KS is the anticanonical bundle. Since N is a rank-1 vector bundle, this
condition identifies them, N = KS. In particular, one gets all in this way the
anticanonical bundles of almost10 del Pezzo surfaces. These are, in turn, classified
by reflexive polytopes [61, §3].

In fact, it turns out that any toric (necessarily local) Calabi-Yau is represented
by a toric diagram which is a convex lattice polytope [135]. And here is the main

10Generalisation of del Pezzo, see [280] for the definition.
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point: this polytope can be identified with the polynomial given by the grid diagram
of a (p, q)-fivebrane web [143, 187].

On the other hand, to calculate the topological A model on a local Calabi-Yau
threefold, the topological vertex formalism has to be applied directly to its toric
diagram [1]. Or, to use the topological B model, topological recursion may be used
on the Newton polynomial [52], which can be seen as a mirror curve for a local CY
X of the form {−w1w2 + F (t, s) = 0} ⊂ C2 × C2

x.
Finally, to connect with gauge theory, a dictionary between Kähler parameters

and gauge-theoretic quantities must be given, and a scaling limit taken, see [44, §3]
for a discussion relevant to this work.

1.5.4 M-theory: Class S
There is yet another construction, directly from M-theory, which makes the AGT
correspondence explicit. An outstanding review is [87].

A large class of Yang-Mills theories with extended supersymmetry may be con-
structed from low-energy effective descriptions of M-theoretic compactifications
[127, 263, 272]. Especially important are so-called class S theories. Given a simply-
laced Lie algebra g, S theories, usually labelled T (g, C,D), are compactifications of
the "strange" maximally superconformal d = 6 N = (2, 0) theory, usually labelled
X (g), on a punctured Riemann surface C with data D attached to the punctures.

The theory X (g) is a superconformal theory thought to describe the worldvolume
of M5 branes [270, 273], as well as NS5 branes in type IIA. It seems the theory
itself has to be non-Lagrangian, as the N = (2, 0) tensor hypermultiplet (φ, λ,B)
contains the real tensor B with ASD field strength ?dB = dB. It is unknown if a
Lagrangian construction which corresponds to a well defined local QFT exists for
this self-duality constraint.

Schematically, a stack of M5-branes is wrapping R4×C or R4
ϵ1,ϵ2

×C. Compact-
ifying further on C to obtain a d = 4 theory, a partial topological twist has to be
applied to preserve 8 supercharges. The Coulomb branch, from this point of view,
occurs when a stack of N M5-branes arranges itself as an N -fold ramified covering
of C, Σ ⊂ T ∗C. The M-theory background itself is R4 × T ∗C × R3.

The genus of the Riemann surface provides global constraints. For example, it
constrains the space of meromorphic functions with perscribed divisors of poles, by
Riemann-Roch, and the genera themselves provide us with a Torelli marking con-
sisting of 2g cycles. These are, in turn, dual to g cocycles, which correspond to the
number of complex structures on a given surface. Indeed, let Mg,n

∼= {Cg,n}/iso de-
note the moduli space of the aformentioned surfaces. Then, for a surface [E] ∈ Mg,n,
the tangent space T[E]Mg,n may be identified with the cocycles H0(E,Ω1). Phys-
ically, these will correspond to deformations on the space of theories - given, e.g.,
by the renormalization group flow. In the context of isomonodromic deformations,
the variations of complex structure will provide us with a set of g times t1, . . . , tg.

On the other hand, the punctures serve as boundary conditions - giving mon-
odromy datum around punctures is equivalent to specifying fluxes of fields, i.e.
their mass according to Gauß’ law, if we recall that a punctured disk is conformally
equivalent to a long tube.

The fact that surfaces, 2-real-dimensional objects, know anything about 4-
dimenional gauge theory is then a consequence of this compactification, akin to
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a quantum Fubini’s theorem - we may view a theory compactified on M4 × Cg,n
as either11 a 4-dimensional theory with certain datum depending on the Riemann
surface, or as a 2-dimensional theory depending on 4-dimensional gauge datum, if
we are able to “shrink” either factor freely. Indeed, for the theories of class S, which
are the ones that fit the bill, the underlying product space theory is superconfor-
mal. We thus get a way to pass from gauge theoretic data to d = 2 CFT data,
as exepmlified by the AGT correspondence [6] Further, since Cg,n is conformally
invariant, we may obtain various dualities by stretching parts into long tubes, for
example. Playing with such deformations in general will yield dualities between the
4-dimensional gauge theories associated to Cg,n, which leads to a "groupoidification"
of theory space – N = 2 dualities [96].

The exact details of such correspondences hinge on the construction of Hitchin
fibrations. Let us not go into the details here, but just say that the Hitchin systems
may be reformulated in terms of flat connections, which are in turn purely global ob-
jects and are classified purely by their monodromy data around the aforementioned
cycles and punctures, and of course by their representation-theoretic information.

In fact, this is almost enough to fix the whole situation, but, crucially, isn’t. A
great geometric insight was to explore whether we may change e.g. the locations
of punctures while keeping monodromy the same. The answer is yes, and leads to
the theory of Painlevé equations, which govern these isomonodromic deformations.
These equations have the property of not having branch cuts or essential singulari-
ties depending on initial conditions, although they may indeed have movable poles
and zeroes of any order if allowed by geometry.

1.6 Painlevé equations
Inspired by the discovery of a novel special function arising from a first order al-
gebraic complex ODE in the works of Abel and Jacobi, namely the Weierstraß℘,
Paul Painlevé [238] posed the more general problem of

Déterminer toutes les équations différentielles algébriques du premier
ordre, puis du second ordre, puis du troisième ordre, etc., dont l’intégrale
générale est uniforme,

where uniform means having a single valued general (not singular) solution; a less
strict version is the ability to ensure singlevaluedness, for instance by removing
cuts from the domain. Fuchsian equations certainly only have fixed critical points,
so only obstacles to this problem are movable critical points in nonlinear ODEs.
Therefore the Painlevé Property is conventionally defined as the absence of mov-
able critical points. The old terminology of an integral being a solution implies a
global solution, although in practice novel transcendents are given by series solu-
tions around fixed singular points. As these functions are automorphisms of P1,
it is possible to exploit the action of the Möbius group to obtain distinct classes,
order by order. For first order, only the Weierstraßtranscendent is new, the main
contribution comes from the six so-called Painlevé transcendents defined by second

11To be more precise, the BPS states counting is equivalent – whether the full spectrum of a
d = 4 QFT can be encoded in a d = 2 CFT is not known.
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order ODEs, the impact of which keeps growing as we enter the second century of
their discovery,

w′′ = R(w′, w, z)

with R a rational function in w and its derivative, analytic in z in the domain.
Besides the six novel transcendents, there are 4412 other solutions with the Painlevé
property, but these can be expressed either in terms of the six, or integrated to
first order equations. The Painlevé equations are usually labelled as PVI to PI. For
example, PIII is

w′′ =
w′2

w
− w′

z
+
αw2 + β

z
+ γw3 +

δ

w

and depends on 4 additional complex parameters α, β, γ, δ, although we can always
set γ = −δ = 4 by rescaling w, z. The transcendents, called Painlevé transcendents,
have fixed critical points at {0, 1,∞} ∈ P1 and moveable first and second order
poles. They are called transcendents because their general solutions cannot be
rational, algebraic, or depend algebraically on classical transcendental functions
[160, §5]. They also cannot be expressed one in terms of another. However, there
are discrete Bäcklund flows which express one transcendent in terms of another
transcendent of the same type with different parameters or with exchanged critical
points. These symmetries are similar to algebraic contingency equations on classical
special functions like the hypergeometric one, which is not an accident since as
special solutions, ie for particular values of parameters, classical special functions
solve

PII⇝ Airy, PIII⇝ Bessel, PVI⇝ Hermite-Weber,
PV⇝ Confluent Hypergeometric, PVI⇝ Hypergeometric,

as on these special points the discrete symmetries simplify [236]. Besides these,
there are also algebraic solutions.

Very soon after their stating, Richard Fuchs [92] showed that PVI may be ob-
tained from isomonodromic deformations of a second order linear equation with four
regular points, to be described, and Garnier [102] showed how to obtain others by a
confluence process, which means "colliding" some of the regular points in a certain
pattern. It is in this sense that the Painlevé equations are integrable - because they
arise as a compatibility condition of an overdetermined linear system [248].

Besides isomonodromy, Fuchs also initiated the study of PVI in terms of what
he calls the Legendresche Differentialgleiehung which are solved in terms of ellip-
tic/Abelian integrals, not necessarily over cycles, ie periods, but morally so. In this
case, a family of elliptic curves of the form Y 2 = X(X − 1)(X − t) over the base
t ∈ P1 \ {0, 1,∞} are given along with a Picard-Fuchs operator

Lt = t(t− 1)∂2t + (2t− 1)∂t +
1

4

It annihilates periods but can be shown to be equivalent to PVI when acting on∫ (X,Y )

∞ dx/y if we fix certain boundary conditions. This kind of integrability was
what mathematicians of yore had in mind, a solution by quadratures. How this
additional elliptic datum ties back to isomonodromic deformations is something

12Sometimes literature cites 47
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Levin and Olshanetsky elucidated [188]. From the point of view of physics, I cannot
help but notice a certain analogy to the Seiberg-Witten curve and its periods (a, aD)
which can be gotten from Picard-Fuchs equations [178], but I am unaware of direct
work to tie that geometric approach to the full solution on the Omega-background13.

What we have described can be summarised as

Painlevé Property Abelian Integrals

Isomonodromy Deformations

R. Fuchs

Manin

Levin-Olshanetsky

Besides this, we shall also comment on yet another geometric method with
phenomenal ability to generalise and unite the study of differential, discrete and
multiplicative Painlevé under one framework, based on Okamoto’s classification
[235] of initial value spaces. We have applied this method to discrete Painlevé
equations.

In our work we also encounter higher-rank generalisations of Painlevé equations
obtained from the Painlevé-Calogero correspondence. However, the author is un-
aware of a general theory behind these generalisations, namely the classification
of their singularities. We may conjecture that moveable codimension one critical
points are absent, but dedicated work is needed for this. Furthermore, we encounter
discrete analogues, although for these a general theory of singularity-confinement
has been developed [244] with some integrability-related subtleties which led to
revision [245].

1.6.1 Isomonodromic deformations
Here we give a brief overview of isomonodromic deformations of Fuchsian systems14

on a n-punctured sphere, P1 \ {a1, ..., an} with regular singularities. We consider a
matrix representation ρ : g → sl(N,C)15 and let

∂zY (z) = A(z)Y (z), A(z) =
n∑

k=1

Ak

z − ak

with Ak ∈ ρ(g). We assume that the matrices Ak are diagonalisable, which means

Ak = GkΘkG
−1
k , Θk ∈ h

and additionally assume that the eigenvalues of Ak are distinct (so-called non-
resonance). If this is so, in the neighbourhood of each puncture ak, the solution
is

Y (z) = G̃k(z)(z − ak)
Lk

13Although the link can be seen to be given by AGT, I am unaware of direct work linking
periods to the transcendent.

14Isomonodromic deformations are more general, see [265] for a shorter, older review.
15Since the Fuchsian system can be viewed as a flatness condition on the singular connection

∂z−A(z) and there is a compatible notion of a gauge transformation which preserves the equation,
A(z) is usually taken to be Lie-algebra-valued.
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and G̃∞(z)(−z)−L∞ around z = ∞, where Gk(z) ∈ G[[z]] and Gk(ak) = Gk. Up
to conjugation by Gk, Lk is the logarithm of the monodromy matrix at the point
ak. We also assume A(z) has no singularity at infinity, so that the monodromy at
infinity is given trivially by the (inverse) product of the monodromies around the
other points, which means

∑
iAi = 0. Without loss of generality, G∞ = id.

As such, for a loop γ : [0, 1] → P1 \ {a1, ..., an} enclosing just one point ak, we
have Y (γ(1)) = Y (γ(0))Mk on the universal cover, with Mk = G−1

k e2πiLkGk. Since
this is a function not of γ but actually of the homotopy class [γ], this provides us
with a representation

π1(P1 \ {a1, ..., an}) → sln

called the monodromy representation. In general this is then a map from the sin-
gular data SD = {(Ak, ak)} to monodromy data MD = {Mk}/∼ up to conjugation.
This much was known up to David Hilbert’s time, so in [137] he asked his 21st
problem:

zeigen, dass es stets eine lineare Differentialgleichung der Fuchsschen
Klasse mit gegebenen singulären Stellen und einer gegebenen Mon-
odromiegruppe giebt

In [35] the first counterexample was given, with four 3 × 3 monodromy matrices
that cannot be written as monodromy data of a Fuchsian system. In fact, the
codimension of monodromy data not realisable by Fuchsian systems is (2n−1)(N−1)
[37, 180]. In interesting cases, dimSD > dimMD in a locally constant way. Suppose
we have an isomonodromic family of Fuchisan systems depending on a parameters
a smoothly,

∂zY (z) =
n∑

k=1

Ak(a)

z − ak

Then we expect the parameters to carve out a submanifold of codimension dimSD−
dimMD in the space of singular data. The local behaviour of this family wrt a is
what we mean by isomonodromic deformations. Further, the isomonodromy defor-
mations we have in mind are Schlesinger equations, in which the parameters a are
the locations of the marked points themselves. It was in this case that Painlevé VI
first turned out in the investigations by Richard Fuchs in 1907 [92], which shows that
Hilbert’s 21. problem is much more interesting than it seems at first sight. However,
we note that if non-resonance is violated, not all isomonodromic deformations are
given by Schlesinger equations [36].

Now in [155, 156] there appeared an interpretation of Schlesinger equations via
deformation theory as a Maurer-Cartan equation. Namely, if d denotes differentia-
tion with respect to z, a1, ..., an, form

Ω = dY Y −1

which is single-valued and holomorphic in P1\{a1, ..., an}. In terms of this one-form,
we have the characterisation of the Fuchs matrices as the residues Ak = Resz=akΩ.
Constant monodromy is in this case equivalent to dLk = 0. Therefore, near ak,

Ω = G̃k(z)dG̃k(z)
−1 + G̃k(z)Lk

d(z − ak)

z − ak
G̃k(z)

−1
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and then, noting what the residues are, this implies Ω =
∑

k Akd log(z − ak) + Ω′.
Consider normalising Y (z = z0) = id. Then Ω = 0 at z = z0, so

Ω =
∑
k

Akd log
z − ak
z0 − ak

Looking at the dak component of dY = ΩY means

∂akY =MakY, Mak = − z − z0
ak − z0

Ak

z − ak

Schlesinger equations are the compatibility conditions of the derivations [∂z, ∂ak ] =
0, which can be expressed by the Lax-like condition

∂akA− ∂zMak = [Mak , A]

Their consistency is the same as asking for d2 = 0. Therefore,

0 = d2Y = dΩ · Y + Ω ∧ dY = (dΩ− Ω ∧ Ω)Y

so Ω satisfies the Maurer-Cartan equation. Using the form of Ω, we can write
explicitly

dAi = −
∑
j 6=i

[Ai, Aj]d log
ai − aj
z0 − aj

which means

∂aiAj 6=i =
aj − z0
ai − z0

[Ai, Aj]

ai − aj
, ∂aiAi = −

∑
j 6=i

[Ai, Aj]

ai − aj

and is slightly simplified by taking the reference point z0 = ∞.
Since from the Schlesinger equations the following one-form is closed, we may

write it as
d log τ =

∑
i<j

trAiAjd log(ai − aj) (1.10)

Locally, it defines the Jimbo-Miwa-Ueno tau function τ , and it can be thought of
as the generator of the isomonodromic Hamiltonian.

Some generalities may be said about the Schlesinger equations. Namely, seen
as an equation on Ak(a), the solutions possess the Painlevé property themselves.
Namely, they may be extended to meromorphic functions on Cn \ {ai = aj, i 6= j}
[155, 156, 190]. The divisor of poles is usually called the Malgrange divisor. As
can be seen from the definition of the tau function, this divisor coincides with the
zeroes of the tau function. By TS/ST, this has connections with exact quantisation
conditions.

Consider the first nontrivial group, Ai ∈ sl2. If there are three singular points,
Möbius transformations can be used to bring them to 0, 1,∞, and the direct and
inverse monodromy problems can be solved in terms of the standard hypergeometric
equation. However, if we have four points, P1 \ {a1, a2, a3, a4}, the space of singular
data has one more dimension than the space of monodromy data. That is, there
is a curve in the space of singular data which maps to the same monodromy. By
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Möbius transformations, we can fix the points to 0, 1, t,∞, with t the cross-ratio of
a1,2,3,4.

Then, with the z-evolution given by the Fuchsian system, ∂zY = A(z)Y and the
Schesinger equation in this case for only one moveable parameter t, ∂tY = MY ,
the sixth Painlevé equation appears as the compatibility condition [∂z, ∂t]Y = 0. In
this sense, Painlevé equations are integrable.

However, for Ai ∈ sl2 I have learned of a wonderful trick from A.I. Shchechkin’s
dissertation [255] I have not been able to trace elsewhere, so we can get to PVI
quickly. Namely, recall the "spinor map" R3 → sl2 of a vector x = (x1, x2, x3) to
X =

∑
i xiσi, where σ1,2,3 are the Pauli matrices. Usually in physics, this map

is denoted by switching to spinor indices, xµ = xαα̇. Consider three such vectors
x,y, z, mapped to X,Y, Z respectively. Then we can calculate that

tr[X,Y ]Z = 4i(x× y) · z = 4i det([x,y, z])

where the last matrix has the vectors as columns. This is simply giving a concrete
expression of the nontrivial element in H3(sl2, k) ∼= k given by the Killing form.
Recalling that the inner products are related as x · y = 1/2 trXY , taking the
square of the previous identity gives

(tr[X,Y ]Z)2 = −2 det

 trX2 trXY trXZ
trXY trY 2 trY Z
trXZ trY Z trZ2


Now consider introducing

σ(t) = t(t− 1)
d log τ

dt
= (t− 1) trAtA0 + t trAtA1

which is morally the Hamiltonian. Then using the Schlesinger equations we find

σ̇ = trAtA0 + trAtA1, t(1− t)σ̈ = tr[A0, At]A1

which together with the monodromies θi = 1/2 trA2
i and A∞ = −A0 −A1 −At and

the identity we just derived gives the so-called sigma form of PVI,

(t(t−1)σ̈)2 = −2 det

 2θ20 tσ̇ − σ σ̇ + θ20 + θ2t + θ21 − θ2∞
tσ̇ − ζ 2θ2t (t− 1)σ̇ − σ

σσ̇ + θ20 + θ2t + θ21 − θ2∞ (t− 1)σ̇ − σ 2θ21


This is, then a nontrivial relation on the set of singular data, and it turns out that
along with it, dimM = dimSD = 7. The transcendent w is then found from the
nonlinear transform

σ = t2(t−1)2

4w(w−1)(w−t)

(
ẇ − w(w−1)

t(t−1)

)
− t

4w
θ20 +

t−1
4(w−1)

θ21 −
t(t−1)

4w(w−t)
θ2t − w+t−1

4
θ2∞.

Although very much obscure in this presentation, w may be gotten from the 12 com-
ponent A(x, t)12. This confirms what we said about the solution of the Schlesinger
equations A(x, t) having the Painlevé property themselves. This also shows that ge-
ometrically, the tau function is much better motivated than the actual transcendent,
so it is naturally the main player in the Painlevé-Gauge correspondence.
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Having obtained the PVI equation, the other Painlevé equations can be obtained
by coalescences of the singular points. See [59] for details, and in particular the
famous figure 3 therein which shows what this looks like on the 4-punctured sphere.
Coalescences should be seen as mappings between the Painlevé equations, and any
statement or correspondence about the equations themselves (the objects) should
be functorial and include the corresponding mappings.

1.6.2 Initial value spaces and symmetries
There is another geometric approach, initiated by Okamoto [235] and extended to
q-difference equations by Sakai [246]. Sakai noticed that the initial value spaces
of both discrete and continuous Painlevé equations may be realised as dP9, the del
Pezzo surface obtained by blowing up C2 at 9 points. The Cremona isometry group
of dP9 acting on the exceptional divisors is W (E9), which is an affine Weyl group
since E9 = E

(1)
8 .

This affine Weyl group contains a translation subgroup Z8 and a finite Coxeter
group part generated by reflections. Realising the action of W (E

(1)
8 ) or a subgroup

as birational transformations on a set of variables leads to a discrete time evolution,
which can be seen to be equivalent to the q−difference Painlevé equations. See [161]
for a review.

Besides the symmetry group, the Sakai classification assigns a "surface" root
system. For q-Painlevé, these two pairs are E

(1)
8−r/A

(1)
r for r = 0, ..., 8, where

(E5, E4, E3, E2, E1) = (D5, A4, A2 × A1, A1 × A1, A1) is standard.
In the case of the six continuous Painlevé equations, the discrete flow commutes

with the continuous one. In the context of the Painlevé/Gauge correspondence [47,
p.30], the un-affinised symmetry group can be interpreted as the flavour symmetry.
For instance D4 = SO(8) is the flavour symmetry of d = 4 N = 2 SU(2) gauge
theory with four flavours.

In [183, 184, 212] and other works, these symmetries were interpreted as sym-
metries of the asymptotic values of the quantum curve coming from the TS/Tau
correspondence. Since a dictionary between these asymptotics and the parameters
of q-Painlevé equations can be established, the same symmetry group action can
be seen to act on these quantum curves. This is, of course, the same statement
as in the previous case, because the asymptotic values of the curve correspond to
punctures, which correspond to masses. The subtlety is that the symmetries of the
quantised curve must be considered.

1.6.2.1 q-Painlevé/BPS quivers

For the reader’s interest, I will point out that a related line of work was successfully
launched which associates to a toric Calabi-Yau a certain BPS quiver [89, 281],
the cluster algebra associated to whose mutations [109] leads to discrete Painlevé
equations [26, 28, 49]. My older academic brother’s thesis [204] devotes an entire
section to this.

1.6.3 The Painlevé-Calogero correspondence
The first part of my work has roots in Manin’s work on the elliptic PVI [191],
incidentally also inspired by string theory, in which a mirror to P2 resulted in the
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Picard-Fuchs equation reducing to

d2q

dτ 2
= − 1

8π2
℘τ (q|τ)

which is deautonomisation of the Calogero-Moser integrable system. The mecha-
nism of deautonomisation was described by Levin and Olshanetsky [188], extended
to other Painlevé equations and to higher rank by Takasaki [260, 261] who realised
this naturally describes isomonodromic deformations on a one-pointed torus.

De-utonomisation merits its own discussion. First we discuss Levin and Ol-
shanetsky’s method which realises isomonodromic deformations in a very "classic"
integrable system way, namely by restricting a flatness condition to a symplectic
quotient. Then we discuss the very concrete manifestation exploited by Takasaki.

Our ultimate goal is to describe motion on the moduli space of stable curves
Σg,n, but for now forget the points and consider an unmarked genus-g Riemann
surface Σg,n 7→ Σg along with a compact complex Lie group G with representation
G

ρ−→ Aut(V ) on a finite dimensional vector space V . Let g ∼= TeG be the Lie
algebra associated with G. Form the associated bundle E = P ×ρ V from the
principal G-torsor P → Σg and consider the space of all connections Conn(Σg) =
{∇A = d +A : Ωk(E) → Ωk+1(E)}, the space of flat connections, FlatConn(Σg) =
{∇A ∈ Conn(Σg)|∇2

A = 0} and the space of gauge transformations G = Γ(AdP )
where AdP = P×AdG which naturally acts on connections. The moduli space of flat
bundles can be realised in two equivalent ways: as the quotient space FlatBun(Σg) =
FlatConn(Σg)/G or as the symplectic quotient Conn(Σg)//G, which we describe
now. Let 〈., .〉 : g2 → C be the pairing on the Lie algebra induced by the Killing
form, nondegenerate by the compactness assumption. Then

ω =
1

2

∫
Σg

〈δA, δA〉

is a symplectic form on Conn(Σg), with δA = Ω1(Σg, g). The momentum map
simply maps a connection δA to it’s field strength FA ∈ Ω2(Σg, End(P )), and the
equivalence of the two is established. We move on to deformations. First, fix a "base"
complex structure on Σg, in local coordinates (z, z̄), and decompose the connection
d+A = (∂+A)⊗dz+(∂̄+ Ā′)⊗dz̄16. Levin and Olshanetsky then introduce chiral
deformations and a spectral parameter. First, consider a small change of variables
to new coordinates (w, w̄) such that

w = z − ε(z, z̄), w̄ = z̄

which means ∂w = ∂, ∂̄w = ∂̄ + µ∂, where µ = ∂̄ε/(1− ∂̄ε)(δ ⊗ dz̄) ∈ Ω(−1,1)(Σg) is
the Beltrami differential. We assume the deformation ε to be small, in particular
this means we assume µ = ∂̄ε. The amount of complex moduli is 3g− 3, so given a
basis of complex moduli17 {µl}3g−3

l=1 , we can decompose our transformation as

µ =

3g−3∑
l=1

τlµl

16∂ = ∂z, ∂̄ = ∂z̄
17Properly, global diffeomorphisms of Σg induce an equivalence on the Beltrami differentials.

This lets us consider the moduli space of deformations. The deformations themselves are then the
tangent space to the moduli space, and this is 3g − 3-dimensional.
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The spectral parameter κ is introduced by replacing ∂ → κ∂ and to preserve ∂w̄ =
∂̄ + µ∂ we also rescale µ→ µ/κ. Then the connection ∇A in deformed coordinates
becomes

(κ∂+A)⊗(dw+∂̄εdw̄)+(∂̄+Ā′)⊗dz̄ = (κ∂w+A)⊗dw+
(µ
κ
(κ∂ + A) + ∂̄ + Ā′

)
⊗dw̄

so that, defining Ā = Ā′ + µ
κ
A, the (0, 1) component becomes (∂w̄ + Ā) ⊗ dw̄. All

this interests us because of the Hamiltonian. In these new, deformed coordinates,
the symplectic form ω becomes

ω =
1

2

∫
Σg

〈δA, δA〉 =
∫
Σg

〈δA, δĀ〉 − 1

κ
〈δA,A〉δµ

Recalling the decomposition of µ, we have 3g − 3 Hamiltonians governing complex
deformations, Hl =

1
2

∫
Σg
〈A,A〉µl, associated with times τl. The equations of motion

of this system are
∂τlĀ =

1

κ
Aµl, ∂τlA = 0

which can be seen as the compatibility condition of

(κ∂w + A)ψ = 0

(∂w̄ + Ā)ψ = 0

κ∂τlψ = 0, l = 1, ..., 3g − 3

for the Baker-Akhiezer function ψ ∈ Ω0(Σg,EndE). The last equations signifies
that a change of monodromy ψ → ψM , where M is a representation of the funda-
mental group π1(Σg) ↪→ G does not depend on the times τl. These equations are,
however, trivial on FlatConn(Σg). To find nontrivial equations all we do is pick a
representative of the G-orbits. We pick a function f ∈ C∞(Σg) and use it to pick a
representative L̄ and define its dual L by

Ā = f(∂̄ + µ∂)f−1 + fL̄f−1

L = f−1κ∂f + f−1Af

Finally, defining Ml = ∂τlf · f−1 leads to the equations

(κ∂ + L)ψ = 0

(∂̄ + µ∂ + L̄)ψ = 0

(κ∂τl +Ml)ψ = 0, l = 1, ..., 3g − 3

which are the compatibility conditions of

κ∂τlL− κ∂Ml − [L,Ml] = 0

κ∂τlL̄− (∂̄ + µ∂)Ml − [L̄,Ml] = Lµl

Equivalently, we fixed a particular Baker-Akhiezer function by ψ → ψf .
Autonomisation is then the κ → 0 limit when τl = τ 0l + κtl. The compatibility

equation reduces to the standard Lax equation

∂tlL− [L,Ml] = 0
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and in fact the entire system reduces to the Hitchin integrable system. This can be
seen from the behaviour of the connection itself, as the (1, 0) component reduces to
(κ∂+A)⊗dz → A⊗dz ∈ Ω0(Σg, g×K), which we identify with the Higgs bundle.

Now consider adding n marked points (x1, ..., xn) to Σg and write Σg,n for the
n-pointed curve, and associate to each point xi a flag variety Flagi = G/Pi with
Pi a parabolic subgroup18. Then we need to restrict the diffeomorphisms of Σg

to diffeormorphisms which vanish at the marked points, and also restrict the gauge
transformations G to reduce to the Borel subgroup at the points. Over the cotangent
bundle of each flag Flagi there is a natural affine space, the coadjoint orbit Oi =
{pi = Adgp

0
i |g ∈ G, p0i ∈ g∗}, which is equipped with the Kostant-Kirillov symplectic

form ωKK
i = 〈pig−1δg ∧ g−1δg〉 =

∫
Σg
δ(xi)〈pig−1δg ∧ g−1δg〉. We simply add these

to the symplectic form

ω 7→ ω +
n∑

i=1

ωKK
i

The moduli space of deformations is fibered over the one of Σg with fibers isomorphic
to U ⊂ Cn, and as a result the dimension is increased to 3g − 3 + n, giving us
times (τ1, ..., τ3g−3, t1, ..., tn). The space of connections Conn(Σg) is replaced by
connections with prescribed singularities

Conn(Σg,n) = {(A, Ā)|Ā|Ui
= 0, A|Ui

= pi(zi − xi)
−1 +O(1), xi ∈ Ui}

and the flatness condition is replaced by FA =
∑

i piδ(xi). As such, the system
reduced to the usual G-Hitchin system when κ → 0, where the Higgs bundle,
coming from A, has prescribed singularities.

For sln, parabolic subalgebras are determined by partitions of n, and the di-
mensions of the flag varieties are given by the hook formula. In literature on AGT,
punctures are often associated directly with Young diagrams.

The Painlevé-Calogero correspondence is the observation that for the one-pointed
torus Tτ , the same Lax pair L,M satisfies both

∂tτL = [L,Mτ ]

and ∂τL + ∂zM = [L,Mτ ], where τ = τ0 + κtτ . The single point can be fixed to
z = 0 using z 7→ z+ c, c ∈ C constant, so the only motion is the deformation of the
complex structure τ . Takasaki [260] has noticed that the appropriate Lax pairs have
been found by Bordner et al [50, 51]. Following an idea by D’Hoker and Phong [71],
non-simply laced Lie algebras receive a slightly modified treatment, with coupling
constants dependent on root length. However, we consider in all cases "root-type"
Lax pairs with a single coupling constant. For simply-laced algebras with roots R,
these are |R| × |R| matrices

Lβγ = π · βδβγ + ig
∑
α∈R

x(q · α, z)δα,β−γ + 2x(q · α, 2z)δ2α,β−γ,

Mβγ = ig

(
℘(q · β|τ) +

∑
ζ·β=1

℘(q · γ|τ)

)
δβγ + ig

∑
α∈R

y(q · α, z)δα,β−γ + y(q · α, 2z)δ2α,β−γ,

18Recall that a choice of complex structure on G means a decomposition of its Lie algebra
TeG ∼= g = n− ⊕ t⊕ n+ into negative roots, the Cartan and positive roots. Let b = t⊕ n+ be the
Borel subalgebra. The parabolic subalgebras p are formed by choosing p = b ⊕ n, with n ⊆ n−

possibly empty. We have n+ ⊂ b ⊆ p ⊆ g.
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where
x(u, z) =

θ1(z − u|τ)θ1(0|τ)
θ1(z|τ)θ1(u|τ)

, y(u, z) = ∂ux(u, z)

is the Lamé function, the most important property of which for Takasaki’s proof is
the heat equation 2πi∂τx+ ∂u∂zx = 0. The Hamiltonian coming from L is

H =
1

2
trL2 =

1

2
π2 +

g

2

∑
α∈R

℘(q · α|τ)

up to π, q-independent terms. This is the elliptic Calogero-Moser Hamiltonian.
When standard Hamiltonian mechanics are considered, the equations of motion are
simply

dqj
dt

= πj,
dπj
dt

= −g
∑
α∈R

℘(q · α|τ)α

However, the equations of motion equivalent to the isomonodromic "Lax" equation
2πi∂τL−∂zM = [L,M ] turn out to be equivalent to formally replacing d

dt
→ 2πi d

dτ
,

2πi
dqj
dτ

= πj, 2πi
dπj
dτ

= −g
∑
α∈R

℘(q · α|τ)α

Manin’s Painlevé VI emerges from this discussion from the specialisation to G =
SU(2). I have used this correspondence to work with pure gauge theory and not
on the torus proper – for this I would like to advertise my older academic brother’s
terrific work [38, 39, 68].

1.7 The Painlevé-Gauge theory correspondence
In [154] it was noticed that the asymptotics of the PIV tau function at t = 0 can
be written in terms of two integration constants σ, š as

τ(t) ∼ const. t(σ
2−θ20−θ2t )/4

×
(
1 +

1

8σ2
(θ20 − θ2t − σ2)(θ2∞ − θ21 − σ2)t

−
∑
ϵ=±1

šϵ

16σ2(1 + εσ)2
(θ20 − (θt − εσ)2)(θ2∞ − (θ1 − εσ)2)t1+ϵσ +O(t2)

)
However, notice that the 4-point conformal block in c = 1 Liouville CFT is

B(∆i,∆|q) = q∆−∆1−∆2 ·
(
1 +

1

2∆
(∆2 −∆1 −∆)(∆3 −∆4 −∆)q +O(q2)

)
(1.11)

Noticing the similarity between the two expressions as "∆ ∼ θ2", the landmark
paper [100] proposed that the complete expansion of the most general PVI tau
function at t = 0 can be written as a multiplicative Zak transform

τ(t) = const.
∑
n∈Z

C(θi, σ + n)t(σ+n)2−θ20−θ2tB(θ2i , (σ + n)2|t)

Further coefficients can be calculated by the combinatorics of Nekrasov functions
coming from the identification of these conformal blocks with N = 2 gauge theory
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on the Coulomb branch of AGT. Of course, the direct comparison that we sketched
was historically just the last step of obtaining a dictionary for the Painlevé-Gauge
correspondence. The actual links between isomonodromy and CFT were known
before, but it took the prudence of Gamayun, Iogorov and Lisovyy to recognise
that they can use the then-recent AGT to calculate the whole tau function.

1.7.1 AGT or CFT/Gauge
Before discussing AGT, I introduce Virasoro conformal blocks. The Virasoro algebra
is a central extension of the Witt algebra of DiffS1 with generators Lm, m ∈ Z, and
central element c with relations

[Lm, Ln] = (m− n)Lm+n +
c

12
m2(m− 1)δm+n,0

In CFT, these are to be viewed as coming from the conserved energy-momentum
tensor ∂̄T (z) = 0 of the conformal symmetry [284], so

T (z) =
∑
n∈Z

Ln

zn+2

We naturally have the Borel b = {Lm|m ≥ 0} and define using it the highest weight
representation

LmVα = δm,0∆αVα

with the highest weight vector Vα of conformal weight ∆α. Denote the primary
state corresponding to ∆α by |∆〉. The Verma module is formed by the descendants
Vα,Y = L−Y Vα where Y is a Young diagram – this can be arranged using the algebra
relations. The dimension of the descendant is ∆α,Y = ∆α + |Y |. By the state-
operator correspondence, operator-product expansions (OPEs) of chiral operators
corresponding to the descendants is defined as

Vα1,Y1(z)Vα2,Y2(z
′) =

∑
α3,Y3

Cα3,Y3

α1,Y1|α2,Y2
Vα3,Y3(z

′)

(z − z′)∆α1,Y1
+∆α2,Y2

−∆α3,Y3
(1.12)

and the Virasoro algebra then implies that the structure constants C are defined
by those of the primary states, Cα3,Y3

α1,Y1|α2,Y2
= Cα3

α1|α2
β
∆α3
∆α1 ,∆α2

(Y1, Y2|Y3) where β are
purely representation-theoretical objects, and Cα3

α1|α2
depend on the dynamics of the

two-dimensional theory. Define the two-point function, or the Shapovalov matrix19,

Q∆(Y1, Y2) = 〈∆|LY1L−Y2 |∆〉 = 〈LY1V∆(0)L−Y2V∆(∞)〉

which by the algebra vanishes unless |Y1| = |Y2|. It lets us express β in terms of the
three-point function,

γ∆α1 ,∆α2 ,∆α3
(Y1, Y2, Y3) = 〈L−Y1V∆α1

(0)L−Y2V∆α2
(1)L−Y3V∆α3

(∞)〉∑
Y

β
∆α3
∆α1 ,∆α2

(Y1, Y2|Y )Q∆α3
(Y, Y3)

19To define insertions at z = ∞, it is customary to take the scaling limit 〈Vα(∞) · · · 〉 =
limz→∞ R2∆α〈Vα(R) · · · 〉.
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which follows from (1.12). We denote the special case when Y1 = Y2 = ∅ by

β
∆α3
∆α1 ,∆α2

(Y ) := β
∆α3
∆α1 ,∆α2

(∅,∅|Y ), γ∆α1 ,∆α2 ,∆α3
(Y ) := γ∆α1 ,∆α2 ,∆α3

(∅,∅, Y )

For primary fields, general theory gives the three-point function exactly. Namely,

〈Vα1,∅(z1)Vα2,∅(z2)Vα3,∅(z3)〉

=
C∆α1 ,∆α2 ,∆α3

(z1 − z2)∆α1+∆α2−∆α3 (z1 − z3)∆α1+∆α3−∆α2 (z2 − z3)∆α2+∆α3−∆α1

Since it can be seen that [L−1, Vα,∅] = ∂zVα,∅, this can be used to show that
γ∆1,∆2,∆3 = ∆1−∆2+∆3. Using the OPE twice, the four-point function of primaries
can be seen to be

〈Vα1,∅(z1)Vα2,∅(z2)Vα3,∅(z3)Vα4,∅(z4)〉

=
∑

α12,Y12,α34,Y34

Cα12,Y12

α1,∅|α2,∅(z2)

(z1 − z2)
∆α1+∆α2−∆α12,Y12

Cα34,Y34

α3,∅|α4,∅(z4)

(z3 − z4)
∆α3+∆α4−∆α34,Y34

〈Vα12,Y12(z2)Vα34,Y34(z4)〉

Setting (z1, z2, z3, z4) = (1,∞, q, 0) by a Möbius transformation lets us express
this four-point function in terms of the representation-theoretic conformal block.
Namely, with some dynamical factors C, we get the s-channel expansion

〈Vα1,∅(1)Vα2,∅(∞)Vα3,∅(q)Vα4,∅(0)〉 =
∑
α

C∆α1 ,∆α2 ,∆αC∆α,∆α3 ,∆α4
q∆α−∆1−∆qB(∆αi

,∆α|q)

B(∆αi
,∆|q) =

∑
(Y1,Y2)

q|Y1|β∆
∆α1 ,∆α2

(Y )Q∆(Y1, Y2)β
∆
∆α3 ,∆α4

=
∑

(Y1,Y2)

q|Y1|γ∆α1 ,∆α2 ,∆
(Y )Q−1

∆ (Y1, Y2)γ∆α3 ,∆α4 ,∆

Then (1.11) follows by explicit calculation,

Q∆(∅,∅) = 〈∆|∆〉 = 1

Q∆([1], [1]) = 〈∆|L1L−1 |∆〉 = 〈∆|L1L1 + 2L0 |∆〉 = 2∆

and the γ∆1,∆2,∆3([1]) we already have. See [195] for more details. The conformal
block itself can be seen to be the square of the norm of a different representation,
the Whittaker vector [97].

The exact combinatorial structure of the Virasoro conformal blocks turns out
to be given in terms of Nekrasov functions [6, §4.3]. Further, the dynamical 3-
point factors in this theory C∆1,∆2,∆3 are given by the DOZZ [76, 285] formula and
correspond exactly the one-loop contributions [6, §A.2]. The original AGT proposal
is given in terms of an n-point function of a Liouville CFT on a Riemann surface
C̄, which has a chiral and antichiral part, and N = 2 class S gauge theory on the
squashed sphere with UV curve C = C \ {z1, ..., zn},

ZS4
b
(T (su(2), C,m)) = 〈Vα1(z1) · · ·Vαn(zn)〉LouvilleC̄
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which localises to the north and south poles by supersymmetry [125, 239], at which
it is given by the theory on the Omega-background. It may, however, be directly
related to the Omega-background by the general philosophy of class S theories and
2d/4d dualities. Schematically, the superconformality of the d = 6 theory on a
product manifold lets us shrink either factor manifold

Z [R4
ϵ1,ϵ2

](C) = Z(C × R4
ϵ1,ϵ2

) = Z [C](R4
ϵ1,ϵ2

)

In this reduced case, there is a direct equality of the instanton part with the con-
formal block,

Z inst.(a,mi|q) = B(∆i,∆|q)

along with a dictionary, ε1 : ε2 = b : 1/b, c = 1 + 6Q2 where Q = b + 1/b is the
background charge of the Louville theory. The dimensions are ∆αi

= αi(Q − αi),
and they are linear combinations of the gauge theory masses for SU(2) gauge theory
with Nf = 4 fundamental flavours,

m1 = α3 − α4 +Q/2, m2 = α1 − α2 +Q/2,

m3 = α1 + α2 −Q/2, m4 = α3 + α4 −Q/2

while for ∆ = α(Q − α), α = a + Q/2, with a the scalar vev. In the more general
case of a genus-g UV curve, sewing parameters q associated with thin necks are
related to the UV gauge coupling as q = e2πiτUV .

In the higher-rank case, the Virasoro algebra is replaced by WN -modules.

1.7.2 Isomondromy/CFT
From the definition (1.10), it can be proved [100, §2.2] that the isomonodromic
tau function for the n-punctured sphere and Möbius transformations f(z) = (αz +
β)/(γz + δ), αδ − βγ 6= 0 transforms as

τ(f(a)) =
n∏

i=1

[
∂f

∂a

]− 1
2
trA2

i

τ(a)

which is also how an n-point function of primary fields with ∆i =
1
2
trA2

i in CFT
behaves. For n = 3, we explicitly get the tau function as the 3-point function

τ(a1, a2, a3) = const.(a1 − a2)
∆3−∆1−∆2(a1 − a3)

∆2−∆1−∆3(a2 − a3)
∆1−∆2−∆3

This line of work was started in [247], where the Fuchsian system was explicitly
solved in terms of the fundamental matrix given by a CFT Ansatz,

Φαβ = (z − z0)
〈OL1(z1) · · · OLn(zn)ψ̄α(z0)ψβ(z)〉

〈OL1(z1) · · · OLn(zn)〉

where OLi
are holonomic fields or twist fields, primaries in a c = 1 d = 2 CFT with

dimensions ∆i =
1
2
trA2

i , and ψ̄, ψ are free fermions with OPE

ψ̄α(z0)ψβ(z) =
δαβ
z − z0
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This OPE guarantees that Φ(z → z0) = 1 is normalised at the reference point
z0. The twist fields OLi

are constructed to realise the monodromies of the original
problem,

OLi
(zi)ψα(z) ∼ (z − zi)

LiO(0)
Li,α

(zi)

with O(0)
Li,α

some local operator. This approach was recently fully developed and
even extended to W-algebras in [27, 104, 105]. The tau function is then the n-point
function,

τ = 〈OL1(z1) · · · OLn(zn)〉

1.7.3 Kiev formula or Painlevé/Gauge
Having expressed the isomonodromic tau function in terms of CFT, AGT enabled
Gamayun, Iogorov and Lisovyy [100, 101] to propose that the Painlevé VI tau func-
tion, as the isomonodromic tau function corresponding to the 4-punctured sphere
with regular singularities, is proportional to the dual or Nekrasov-Okounkov parti-
tion function of Nf = 4 SU(2) super Yang-Mills on the self-dual Omega-background

τPV I ∝ ZN.O. =
∑
n∈Z

e4πiηnZ(a+ n,m, ε,−ε|t)

as the self-dual Omega-background corresponds to c = 1 CFT, as well as to extend
the correspondence functorially to other Painlevé functions via coalescences. A host
of proofs has already been given: directly from representations of Virasoro [29], from
Nakajima-Yoshioka blowup relations [32], from the Riemann-Hilbert problem [103].

Extending this to higher-rank isomonodromic problems and general gauge groups
G via the Painlevé/Calogero correspondence was a major focus of my work.

1.7.4 Spectral curve
The appearance of the Riemann surface C in all of this merits a brief discussion. The
Painlevé/Gauge correspondence identifies the 4-punctured P1 of the isomonodromic
problem with the UV or Gaiotto curve, of which the Seiberg-Witten curve is a double
cover of. This is not the SW curve itself. At this point we note a subtlety. On
the Hanany-Witten brane realisation of in type IIA string theory , the M-theory
curve of SU(N) can be seen either as a "horizontal" 2-fold branched cover of one of
the NS5 branes taken as the base with N +Nf/2 punctures, or as an (N +Nf/2)-
fold branched cover of a 2-punctured D4. The UV curve corresponds to the latter
realisation.

There is one more curve associated to each Fuchsian system, and that is the
spectral curve, which is for a sl2-valued A(z)

Σ det(y1− A(z)) = y2 − 1

2
trA(z)2 = 0

It is a double-cover of the z-plane, which we already know is the UV or Gaiotto
curve, and a canonical meromorphic differential λ = ydz ∈ H1(Σ). Then it will
come to no surprise that in [47] it was noted that this is exactly the Seiberg-Witten
curve of N = 2 SU(2) super Yang-Mills with Nf ≤ 4 flavors, and an explicit
dictionary was given mapping all the Painlevé equations to the gauge theories,
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including the non-gauge Argyres-Douglas theories. The singular behaviour needed
to specify λ is the same as the one of A(z), which corresponds to the UV behaviour
as masses are attached to punctures. On the other hand, the double cover involves
the σ function, which corresponds to the IR Coulomb data.

In this scheme, confluences on the Painlevé side correspond to decouplings of
fundamental hypermultiplets, or to Argyres-Douglas scalings.

The spectral curve is not fixed by isomonodromic deformations, but the system
can be mapped to an isospectral one which fixes the curve and doesn’t involve
motion on the moduli space, the Whitham deformations, which correspond to RG
flow [113]. This is also physically expected, as the SW curve is a feature of the
un-Omega-deformed theory.

1.8 Defects
Defects in a QFT are a set of boundary conditions on the fields and boundary
couplings that one imposes on sub-manifolds, fitting, as such, very naturally in
the scheme of functional interpretations of QFT [249], like in the Atiyah-Segal
formalisation [8, 250]. The AGT correspondence can be extended to defects. On
the d = 4 gauge theory side, surface operators assign a singular boundary condition
to the field normal to the defect [119, 121],

A = adφ+ ...,

where a ∈ t specifies the residual gauge symmetry on the defect by its commutant
and φ winds around the defect – for instance, the surface can be at (z1, z2 = 0) ⊂ C2

so z2 = reiϕ – as well as the monodromy around D by the associated Levi subgroup
L ⊂ G. Besides a, the magnetic charge of the defect

exp

{
ib

2π

∫
D

F

}
has to be specified. The two parameters are packed in a single complex parameter
η ∈ Q∨ in the coroot lattice. So called full surface operators, with L = T the
Cartan, can have their monodromy twisted by a central element of Z(G) ∼= P∨/Q∨.
In fact, they generate the one-form symmetry of super Yang-Mills, which is valued
in Z(G) [98, 145].

The surface operator can be seen as an improperly quantised Wilson loop, as∫
D
F =

∮
∂D
A. Therefore, to restore single-valuedness suggests to introduce

τλ(η, σ|t) =
∑
n∈Q∨

e4πiη·nZ(σ + λ+ n,m|t)

where λ ∈ Z(G) additionally shifts the scalar vev. This is exactly the Kiev Ansatz.
Computations from blowup relations also imply that a surface defect has this form
[224].

I obtained Toda-like equations for the RG-flow of these operators, which is the
physical interpretation of differential equations they satisfy in t. This system is the
radial reduction of a d = 2 Toda lattice on the cylinder C×, and it arises naturally as
the tt∗ equations [58] for a Landau-Ginzburg model describing complex deformations
of a Z(G) singularity, miniscule flag manifolds [162].
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This is explained by looking at a different way to introduce a defect. Rather than
purely from the d = 4 side, a half-BPS surface defect can be seen as a d = 2 theory
coupled to the d = 4 bulk – a sigma-model. More precisely, this is a N = (2, 2)
d = 2 GLSM describing maps D → G/L. For a full surface defect, the target space
G/L = G/T is a complete flag variety. Its Hori-Vafa mirror is the GLSM.

From the class S construction, these defects are M2 branes probing the geome-
try, with pointlike support on the the CFT side in AGT.

1.9 Topological string
Topological string theory on a Calabi-Yau three-fold X encodes Gromov-Witten
invariants in the following way. Seen as a sigma model of Riemann surfaces into
the target manifold, the partition function can be written as a genus expansion

logZX(t, gs) =
∑
g≥0

g2g−2
s Fg(t) = F (t, gs)

in terms of the genus g free energies Fg(t), where t is a basis of H2(X,Z). This
is a perturbative expansion, as membrane effects O(e−1/gs) are hidden, and exact
calculations can provide the non-perturbative completion. We ignore this issue for
now, and reserve the name "perturbative" for something else. The structure of the
free energies is such that

Fg(t) =


1
3!
aijktitjtk +

∑
dN

d
0 e

−d·t, g = 0

biti +
∑

dN
d
1 e

−d·t, g = 1

Cg +
∑

dN
d
g e

−d·t, g ≥ 2

where aijk are classical triple intersections in H2(X,Z) and Cg is the constant map
contribution to the free energy. We will call the all-genus sum involving aijk, bi and
Cg the perturbative part, and distinguish it from the BPS part of the total free
energy of the topological string which encodes the rational GW invariants,

FBPS(t, gs) =
∑
g≥0

∑
d

Nd
g e

−d·tg2g−2
s = F (t, gs)− F pert(t, gs)

This BPS part be resummed in terms of the integral Gopakumar-Vafa invariants
[110]

FBPS(t, gs) =
∑
g≥0

∑
d

∑
w≥1

1

w

(
2 sin

gsw

2

)2g−2

e−wd·t

Even though this is a much simpler theory than any full string theory, calculation
remains challenging, as we rarely have a firm computational grip of the required
invariants. Dualities may, however, simplify the theory enough for direct calculation
to be possible - we have elsewhere commented on the A-model partition function
on the resolved conifold being given by Chern-Simons theory on S3, the underly-
ing mechanism being the geometric transition between the resolved and deformed
conifold. The generalisation of this argument to toric (and therefore noncompact)
Calabi-Yau threefolds is the topological vertex [1]. On the B-model side, we can
use topological recursion [52, 84].
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These methods have a two-parameter refinement [150], which will on suitable
local Calabi-Yau threefolds turn out to correspond to super Yang-Mills theory on
the Omega-background [262]. In refined setting, the Gopakumar-Vafa invariants
are be generalized to refined BPS invariants Nd

jL,jR
which depend on spins jL, jR.

They are integral and are related to the usual Gopakumar-Vafa invariants as∑
jL,jR

χjL(q)(2jR + 1)Nd
jL,jR

=
∑
g≥0

nd
g

(
q1/2 − q−1/2

)2g
,

where
χj(q) =

q2j+1 − q−2j−1

q − q−1

is the SU(2) character for the spin j. Then the BPS part of the refined topological
string free energy is given by

FBPS
ref (t, ε1, ε2) =

∑
jL,jR

∑
w,d≥1

1

w
Nd

jL,jR

χjL(q
w
L )χjR(q

w
R)

(q
w/2
1 − q

−w/2
1 )(q

w/2
2 − q

−w/2
2 )

e−wd·t,

where q1,2 = eiϵ1,2 , qL,R = e(ϵ1∓ϵ2)/2 and the perturbative by

F pert
ref (t, ε1, ε2) =

1

ε1ε2

(
1

6
aijktitjtk +

(
4π2 − (ε1 + ε2)

2
)
bNS
i ti

)
+ biti

where the bNS
i can be obtained by using mirror symmetry as in [279], so that the

full refined topological string free energy is their sum, and has an expansion

Fref(t, ε1, ε2) = F pert
ref (t, ε1, ε2) + FBPS

ref (t, ε1, ε2)

=
∑
n,g≥0

(ε1 + ε2)
2n(ε1ε2)

g−1Fn,g(t)

The coefficients Fn,g(t) can also be obtained using the holomorphic anomaly equa-
tions. Also, there is a subtlety regarding shifting the Kähler parameters t by a
certain B-field which ensures some pole cancellations, but this can be glossed over
as for local P1 × P1, which is mostly the example to keep in mind in the whole
introduction, it can be ignored [116, 192]. There are two notable limits. First of all,

Fref(t, ε1 = gs, ε2 = −gs) = F (t, gs)

gives us back the unrefined topological string. Secondly, the Nekrasov-Shatashvili
limit

FNS(t, ℏ) = lim
ϵ1→0

ε1Fref(t, ε1, ℏ)

can be expressed in terms of a new "gauge coupling" ℏ as

FNS(t, ℏ) =
1

6ℏ
aijktitjtk+b

NS
i tiℏ+

∑
jL,jR

∑
w,d

Nd
jL,jR

sin ℏw
2
(2jL + 1) sin ℏw

2
(2jR + 1)

2w2 sin3 ℏw
2

e−wd·t.

It has the expansion
FNS(t, ℏ) =

∑
n≥0

FNS
n (t)ℏ2n−1.
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This is the limit featured in ABJM theory. There is an important behaviours which
links the refined topological string to d = 5 N = 1 gauge theory on the Omega
background, provided X engineers it,

ZX(t, ε1, ε2) = ZNek.(ε1, ε2, a,m|q)

with an appropriate dictionary between the vevs a and masses m and the Kähler
parameters, checked for the self-dual case in [83, 139, 148, 149] and refined [262],
although the worldsheet description of the refinement is not yet known. This can be
understood in terms of M-theory on X×S1×Rϵ1,ϵ2 , which reduces to the topological
string [74]. The appearance of the 5 dimensional theory is not a surprise if one
considers that the toric diagram of X is the same as the (p, q)-fivebrane web in type
IIB which realises the same theory.

1.10 Pivot to 3d

1.10.1 Warm-up: GOV correspondence
We note also that the effect of including points is We recall the Gopakumar-Ooguri-
Vafa correspondence, which relates SU(N) Chern-Simons theory on S3 with level
k to the closed topological string A-model on the resolved conifold with gs =

2π
k+N

and complexified Kähler volume of the exceptional divisor of t = iNgs =
2πiN
k+N

. This
is a Large N duality, such that gs = g2CS, with the t’ Hooft parameter λ = g2CSN .
The result can be verified by writing the exact result

ZCS(S
3) =

ei
π
2
(N−1)N

(k +N)N/2

√
k +N

n

N−1∏
s=1

(2 sin

(
sπ

k +N

)
)N−s = exp

{
−
∑
g≥0

λ2g−2Fg(t)

}
and recognizing the conifold free energy [110, 237]. The underlying mechanism
of this duality is the geometric transition, an extremal transition connecting two
different components of the Calabi-Yau moduli space using a degeneration. This is
secretly a closed-open duality, since it can be viewed as a topological sector of open
type IIA string theory on N D6 branes wrapping the S3 inside a deformed conifold
being related to the closed A-model on the resolved conifold with flux through the
P120. The branes dissolve into the geometry, and we obtain a gauge-gravity duality.

We note that, besides the deep geometric intuitions behind it, this is a beautiful
example of a duality in the sense of relating two differing regimes.

1.10.2 M2 brane worldvolume theory and the ABJM ma-
trix model

The duality above is of considerable interest, yet inexact. To apply the machin-
ery of equivariant localization, we instead look at supersymmetric theories. The

20Actually, much can be said about the relation of the open topological string and Chern-Simons
theory. The precise link was given by [277], relating open topological strings on the cotangent
space of a 3-manifold with N Lagrangian branes wrapping the zero-section to the Chern-Simons
theory on the 3-manifold itself. It forms the backbone of the topological vertex formalism, which in
principle allows computation of exact topological string partition function for any local Calabi-Yau
described by a brane web.
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worldvolume theory of M2 branes will naturally be a 3-dimensional theory, with
various amounts of supersymmetry depending on the configuration. On the other
hand, if a duality linking to gauge theory exists, we expect a 5-dimensional theory
with an S1 fibration, corresponding to the lift to M-theory. This theory of branes
was long sought after. Why is M-theory harder to deal with than type II theories?
Consider d = 11 supergravity as a low-energy model. It has black brane solu-
tions corresponding to M2 and M5 branes. By counting microstates from entropy
calculations, stacks of N such branes have degrees of freedom growing as [177]

N M2 ∼ N3/2, N M5 ∼ N3

None of these agree with any gauge theory, which scales at large N as N2, the
number of independent components of a unitary matrix, and which agrees with
how D-brane microstates scale [176]. M5 branes have been the focus of the other
parts of this work, as they feature in class S theories. Here we are interested in the
M2 brane.

The initial attempt was BLG theory [15, 16, 123], which involved an (almost)
2-Lie algebra structure, a trilinear operator on the scalar fields satisfying a higher
analogue of Jacobi’s identity, which came about from attempts to generalise Nahm’s
equation of D2−D4 intersections to M2−M5 intersections [18]. It was recognised
[185] that this theory described the worldvolume theory of 2 M2 branes probing a
C4Z-singularity. As far as I’m aware, the "higher" Lie algebraic datum turned out
the be a red herring. The BLG theory also featured maximally supersymmetric, ie
N = 8, conformal super Chern-Simons theory with matter, and this led to successful
generalisation.

The particular theory is ABJM, a maximally supersymmetric conformal Chern-
Simons theory with gauge group Uk(N1)×U−k(N2) and matter in the bifundamental
[3, 130, 132]. The target space is C4/Zk, and if N1 = N2 = N , the theory describes
a stack of N M2 branes stuck the Ak singularity; otherwise, we’re looking at a
system of min(N1, N2) M2 branes and |N1 − N2| fractional branes [2]. If k = 1, 2,
the amount of supersymmetry enhances to N = 8 from the usual N = 6, and for
k = 2 and N1 = N2 = 2 we reduce to the BLG model. It is possible to also introduce
FI terms as well as masses to the bifundamental chiral multiplets while preserving
N = 2 supersymmetry by turning on the vevs of the background vectormultiplets
of the flavor symmetries [90], but more on that in the more specialised sections.

Imamura and Kimura [146] showed how more general circular quiver superChern-
Simons theories with bifundamental matter describe stacks of branes.

U(Ni−1)ki−1
U(Ni)ki U(Ni+1)ki+1

For these kinds of theories, supersymmetric localisation [22, 163] can be used to
calculate the partition functions exactly. For instance, for the theory on S3, the
rules are such that for each node we get an integration with a

U(Ni)ki ⇝
1

Ni!

∫
dNiσj
(2π)Ni

e
iki
4π

∑
j σ

2
j
∏Ni

p<q

(
2 sinh σp−σq

2

)2
· · ·

factor in the numerator and for each bifundamental

U(Ni)ki U(Ni+1)ki+1
⇝ · · ·∏Ni

p=1

∏Ni+1

q=1 2 cosh
σ
(1)
p −σ

(2)
q

2
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The brane configuration whose worldvolume these theories describe can be presented
in type IIB string theory in terms of stacks of Ni D3 branes and (1, ni)5-branes as
[3, 23, 175] The Chern-Simons level of the node corresponding to the i-th stack is

Ni D3 Ni+1 D3

(1, ni)5 (1, ni+1)5

Figure 1.3: The type IIB setup for a N = 3 super Chern-Simons necklace quiver.

the difference of the D5 stacks of the (p, q)5-branes they are suspended on. This
realisation makes it apparent that we need∑

i

ki = 0.

In any case, the rules outlined above realise the partition function of stacks of M2
branes to a matrix model. The ABJM matrix model for U(N)k × U(N +M)−k is,
ignoring some overall signs,

Zk,M(N) =
1

N !(N +M)!

∫
dNσ

(2π)N
dN+M σ̃

(2π)N+M
e

ik
4π (

∑
j σ

2
j−

∑
j σ̃

2
j )

∏N
p<q

(
2 sinh σp−σq

2

)2∏N+M
p<q

(
2 sinh σ̃p−σ̃q

2

)2
∏N

p

∏N+M
q

(
2 cosh σp−σ̃q

2

)2
Consider M = 0 for now. We will use this case to illustrate the Fermi gas formalism.
Using the Cauchy determinant formula,∏

p<q 2 sinh
xp−xq

2

∏
p<q 2 sinh

yp−yq
2∏

p,q 2 cosh
xp−yq

2

= det
p,q

1

2 cosh xp−xq

2

we may write

Zk,0(N) =
1

N !2

∫
dNσ

(2π)N
dN σ̃

(2π)N
det
p,q

[
e

ik
4π

σ2
p− ik

4π
σ̃2
q

2 cosh σp−σ̃q

2

]
det
p,q

[
1

2 cosh σq−σ̃p

2

]
We can use the Andréief or Gram or Heine identity next to get "rid" of one integra-
tion, ∫ N∏

i=1

dµ(xi) det
i,k

[fi(xk)] det
j,k

[gj(xk)] = N ! det
i,j

[∫
dµ(x)fi(x)gj(x)

]
leading to

Zk,0(N) =
1

N !

∫
dNσ

(2π)N
det
p,q

[
dσ̃

2π

e
ik
4π

σ2
p− ik

4π
σ̃2
q

2 cosh2 σp−σ̃q

2

]
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The Fermi gas formalism [192] interprets the determinand in terms of a quantum
mechanical operator,

Zk,0(N) =
1

N !

∫
dNx

(2π)N
det
i,j

〈xi| ρ̂ |xj〉 , ρ̃ =
1

2 cosh p̂
2

e−
i

4πk
x̂2 1

2 cosh p̂
2

e
i

4πk
x̂2

where [x̂, p̂] = 2πik are canonical position and momentum operators, and the iden-
tity essentially follows from

〈xi|
1

2k cosh p̂
2

|xj〉 =
∫

dp

2πk

e
i

2πk
(xi−xj)p

2 cosh p
2

The name Fermi gas follows from the observation that if ρ̂ = e−Ĥ then this is the
partition function of N free fermions with

Ĥ = log 2 cosh
p̂

2
+ log 2 cosh

x̂

2

as the one-particle Hamiltonian at β = 1, which can be seen to reduce to the har-
monic oscillator in a scaling limit of small p̂, x̂. Crucially, the inverse of ρ̂ turns out to
be the Newton polygon corresponding to the mirror of the topological string on local
P1×P1 with the two Kähler parameters, the sizes of the P1’s, equal. Under T-duality,
this is exactly the Hanany-Witten geometry which realises the Coulomb branch of
N = 2 d = 4 SU(2) super Yang-Mills as the IR theory. To see this, note that under
a similarity transformation ρ̂ 7→ e−

i
4πk

p̂2 ρ̂e
i

4πk
x̂2

= (2 cosh p̂/2)−1(2 cosh x̂/2)−1,

ρ̂−1 = eπik/2ep̂/2+x̂/2 + ep̂/2−x̂/2 + e−πik/2e−p̂/2+x̂/2 + e−p̂/2−x̂/2

The road to the TS/ST correspondence as well as the identification with the topo-
logical string comes from the grand partition function,

Ξk,0(µ) =
∑
N≥0

eNµZk,0(N) =
∑
dn≥0

∞∏
n=1

eµdnn
1

dn!

(
(−1)n−1

n
tr ρ̂n

)dn

∞∏
n=0

exp

(
(−1)n−1

n
eµn tr ρ̂n

)
= exp tr log(1 + eµρ̂) = det(1 + eµρ̂)

where the second equality comes from decomposing the permutations coming from
the integral of an N ×N determinant into cycles. The end result relates the zero-
divisor of Ξk,0(µ) to the quantisation of the one-particle Hamiltonian Ĥ.

Of more interest is the case of unequal ranks, M > 0, which describes a theory
with fractional branes. There are two different approaches, which we mention in
brief.

The first of these is called the closed-string formalism [12, 140, 200]. Here, the
goal is to "absorb" the fractional branes into the background geometry, modifying
the M = 0 operator ρ̂ to ρ̂M . It can be shown that, if we define the potential

V (x) =
(
e

x
2 + e

x
2
+πiM

)−1

M−1
2∏

s=−M−1
2

tanh
x+ 2πis

2k
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then the matrix model, normalised by the N = 0 partition function21, becomes

Zk(N,N +M)

Zk(0,M)
=

1

N !

∫
dNx

(4πk)N

N∏
p<q

tanh2 xp − xq
2

∏
p

V (xp) =
1

N !

∫
dx

2π
det
i,j

〈xi| ρ̂M |xj〉

with 〈x| ρ̂M |y〉 = V 1/2(x)(2k cosh x−y
2k

)V 1/2(y). The explicit inverse can be obtained
by using Fadeev’s quantum dilogarithm [167], and reduces to

ρ̂−1
M (−1)M = eπik/2−2πiMep̂/2+x̂/2 + ep̂/2−x̂/2 + e−πik/2e−p̂/2+x̂/2 + e−p̂/2−x̂/2

which can be seen to be the same curve with a different Kähler parameter. The
spectral determinant is now

Ξk,M(µ) =
∑
N≥0

eµNZk(N,N +M) = Zk(0,M) det(1 + eµρ̂M)

The other way, called the open-string formalism [200] is to keep ρ̂ the same and
calculate the corrections,

Ξk,M(µ) = Ξk,0(µ) det(H(M))

where H(M) is a finite-dimensional matrix, whose elements turn out to be com-
putable recursively in terms of traces tr ρ̂n using the TWPY formalism [243, 266].

I would like to thank my co-worker Tomoki Nosaka for explaining these things
to me. A good review is [131].

1.10.3 The grand potential and the nonperturbative topo-
logical string

ABJM can be seen to provide the exact, nonperturbative completion of the topo-
logical string. In M-theory, the fundamental string and the D-brane descend from
the same object, the M2 brane, and the two effects of worldsheet and D2 instantons
get unified in terms of M2 branes wrapping Calabi-Yau three-cycles [20]. In the ’t
Hooft limit, with k fixed and N large, ABJM is dual to M-theory on AdS×(S7/Zk).
As explained in [130],M2 branes on S7/Zk can wrap the three-cycle S3/Zk coming
from the S3 fibration of S7, and this corresponds to worldsheet instantons on P1 in
type IIA, but they can also wrap 3-cycles in H3(S

7/Zk,Z) = Zk which corresponds
to "D2 instantons" wrapping the Lagrangian submanifold RP3. This connection to
the topological string can be made concrete by defining the grand potential,∑

n∈Z

eJ(µ+2πin,k) = Ξk,0(µ)

which we here consider just for M = 0. The same potential may be obtained by
Jnaive(µ, k) = log Ξk,0(µ) and dropping an oscillatory part which restores the 2πi
periodicity in µ. The grand potential splits as

J(µ, k) = Jpert(µeff , k) + Jnp(µeff , k)

21This is equal to the U(M) Chern-Simons partition function, Zk(0,M) =

k−M/2
∏M−1

s=1 (2 sin πs
2 )M−s [274]
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where the relation between µ and µeff will be explained shortly. The perturbative
part is cubic in µ [80, 126, 134, 192, 200]

Jpert(µ, k) =
Ck

3
µ3 +Bkµ

2 + Ak,

Ck =
2

π2k2
, Bk =

1

3k
− k

12
,

Ak =
2ζ(3)

π2k

(
1− k3

16

)
+
k2

π2

∫ ∞

0

dx
x

ekx − 1
log
(
1− e−2x

)
For integral k, the last integration can be performed exactly. The effect of M 6= 0
here is to modify only Bk quadratically in M . Because Zk(N) can be recovered
from J(µ, k), the purely perturbative part gives

Zpert
k (N) =

∫
iR

dµ

2πi
eJ

pert(k,µ)−µN = C
−1/3
k eAkAi

(
C

−1/3
k (N −Bk)

)
which confirms the N3/2 scaling of the free energy along with corrections, as Ai(x) ∼
e−

2
3
x3/2

2−1π−1/2x−1/4 for x → +∞, or indeed from a saddle-point analysis which
gives µ ∼

√
N/Ck. In fact, the actual coefficient tells us slightly more, including

the volume of the compact manifold Y in the gravity dual AdS4 × Y [136].
The non-perturbative part is given by

Jnp(µ, k) = F (teff , gs) +
1

2πi

∂

∂gs

(
gsF

NS(
teff

gs
,
1

gs
)

)
for local P1 × P1, where the two Kähler parameters are teff± = 4µeff/k ∓ πi. Note
that this explains the origin of the effective chemical potential µeff . Namely, as seen
from the Fermi gas formalism, ABJM theory quantises the mirror curve to local
P1×P1. The periods of the mirror curve H(x, p) = −1+ ex+ ep+ z1e

−x+ z2e
−p = 0

are related to the Kähler parameters via the quantum mirror map which relates

Q± = e−teff± /gs = z±e
ΠA

and z± can be identified with the bare Kähler parameters as z± = e−t±/gs . This
total free energy satisfies the HMO pole-cancellation mechanism [132], so that order
by order in e−T there are no poles in gs. Both the NS part of the grand potential
and the effective Kähler parameters teff encode nonperturbative terms of the form
e−t/gs , coming from the quantum periods from the B-model side.

1.11 The TS/ST/tau correspondence
The results of this section build up on and generalise the correspondence of the
ABJM theory with topological string on local P1×P1, which engineers d = 4 N = 2
super Yang-Mills. My attempt was to explain the correspondence by building it up
using an easy toy model, mainly based on the work of Marcos Mariño and colleagues.
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1.11.1 TS/ST
Consider a B-model mirror curve for a local Calabi-Yau threefold X of the form
{−w1w2 +WX(e

p, ex) = 0} ⊂ C2 × C2
x. Here and elsewhere, we restrict our focus

to WX Newton polynomials

WX(e
p, ex) =

∑
i,j

µi,je
ip+jx

We consider only the zero-section

WX(e
p, ex) = 0

This is an algebraic curve in ep, ex. As of date of writing, the theory we describe
is exactly known for several cases, some of which are infinite families, but not in
full generality. By exactly known, I mean exactly calculable, a property which cur-
rently hinges on several properties of Fadeev’s quantum dilogarithm – eiven enough
numerical ingenuity, however, no obstacle to general calculations is immediately ob-
vious. In specialibus generalia quaerimus, therefore we restrict to the genus-1 case,
the first nontrivial one22. The concrete example I have in mind that of X as local
P2, ie X = KP2 = tot(O(−3) → P2)23, and

WX(e
p, ex) = ep + ex + e−p−x + z−

1
3 = 0

This is an elliptic curve with a single modulus corresponding to the interior point.
To motivate the discussion, let us calculate the classical periods

ΠA,B =

∮
A,B

p dx, p± = log

{
−z−

1
3 − ex ±

√
(z−

1
3 + ex)2 − 4ex

}
For now, we consider the regime z → 0, which means

ep + ex + e−p−x → ∞

under appropriate scaling. Correspondingly, let us identify the A-cycle with a loop
around the vanishing ex. Consequently, the A-period becomes, with a rescaling of
convenience24,

ΠA =
3

2
Res
ex=0

[p+ − p−] = log z − 6z + 45z2 − 560z3 +O(z4)

The B-period is harder to evaluate – the reader can find it in [278]. It yields

ΠB = log2 z + 2 log z
(
−6z + 45z2 − 560z3 + ...

)
− 18z +

423

2
z2 − 2672z3 +O(z4)

Armed with the periods, we can calculate the genus-0 prepotential F0(t) defined
implicitly via

dF0

dt
=

1

6
ΠB, t = ΠA

22Later we comment on genus 0 as a limiting case of a more general family.
23Calabi-Yau, since c1(O(−3)) + c1(P2) = −3 + 3 = 0.
24Periods are projective.
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to find

F0(t) =
t3

18
+ 3e−t − 45

8
e−2t +

244

9
e−3t − 12333

43
e−4t

=
1

6
a111t

3 +
∑
d≥1

Nd,0e
−dt

where the numbers Nd,0 ∈ Q are the genus 0 Gromov-Witten invariants of local P2,
a list of which can be found in the appendix of [62]. Properly, these numbers are
of interest in the A-model of the topological string, and what we calculate is maps
from a genus g Riemann surface Σg to the Calabi-Yau 3-fold X. In this topological
string theory limit, the maps are holomorphic, and the t is a holomorphic Kähler
modulus, in this instance the only one. What we’ve done is calculate the genus 0
version of the more general free energy in the large radius limit,

Fg(t) =
∑

hol.f :Σg→X

e
−

∫
Σg

f∗(ω)
=
∑
d≥1

Nd,ge
−dt

with ω ∈ H2(X;C) the Kähler class. What is, of course, interesting about this
calculation is that it involved periods of an elliptic curve associated to X as a
section of its mirror Calabi-Yau. We’ve seen this here in a very concrete manner,
as z is the complex modulus of the mirror CY, related nonlinearly to the Kähler
modulus t. It’s important at this point to stress that the large radius limit was
involved, which was t >> 0,z << 1. The individual prepotentials can be organised
as an all-genus sum as in section 1.9

F (gs, t) =
∑
g≥0

Fg(t)g
2g−2
s

A key insight comes from the combinatorial argument

Fg(t) ∼ (2g)!, g >> 1

which indicates that the above sum is an asymptotic series. General arguments on
resurgence give rise to the expectations of this being rather a trans-series:

F (gs, t) =
∑
g≥0

Fg(t)g
2g−2
s +O(e−1/gs)

Several remarks are in order. Firstly, only the first term has, as yet, a combinato-
rial interpretation in terms of counting holomorphic curves (GW invariants). The
second term is non-perturbative and counts BPS effects. Secondly, the general form
of the series strongly suggests we view the higher genus corrections as being, in a
sense, quantum corrections. We are interested in curve quantisation in the sense
described in [120]. That is, to the elliptic curve we associate the operators

x, p 7→ x̂, p̂, [x̂, p̂] = iℏ · id, ℏ > 0

WX(x, p) = 0 7→ WX(x,−iℏ∂x)ψ(x, ℏ) = 0

The idea is to repeat the previous calculation to get all the higher-genus corrections,
after an appropriate identification of gs and the Planck constant. At this point we
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can solve it perturbatively using a WKB-type Ansatz

ψ(x, ℏ) ∼ 1√
p(x, ℏ)

e
i
ℏ
∫ x dx̃p(x̃,ℏ),

p(x, ℏ) = p(x) +
∑
n≥1

ℏ2npn(x)

The leading term is just the classical period, from WX(x, p(x)) = 0, so it makes
sense to define quantum periods using p(x, ℏ),

ΠA,B(z, ℏ) =
∮
A,B

dxp(x, ℏ) = ΠA,B(z) +O(ℏ)

and consequently
dFℏ

dt
=

1

6
ΠB(z, ℏ), t = ΠA(z, ℏ)

This almost works. In fact, what we get from this process is the prepotential in the
Nekrasov-Shatashvili limit [202],

Fℏ(t) =
∑
n≥0

ℏ2nFN.S.(z)

which we discuss elsewhere. In a sense, this is orthogonal to the series we wanted.
Since gs = ε1, where ε1 = −ε2 and ℏ = ε1 where ε2 = 0, we could conclude that in
this case,

gs ∼
1

ℏ
This means that the solution is again perturbative. Note that WKB is in general
an asymptotic solution. These issues can, however, be fixed if we recognise that
we’ve not really been doing quantisation, since we had no Hilbert space. In fact, to
be less sloppy, we consider both our operator and our state vector.

For the Hilbert space we take the canonical choice L2(R). The curve, now
promoted to an operator we’re looking at is of the form

WX(e
p̂, ex̂) =

∑
i,j

µi,je
ip̂+jx̂

once we adopt Weyl ordering. Here ex̂, ep̂ are unbounded, self-adjoint operators on
L2(R), but and it’s not clear that their bilinear combination is self-adjoint on the
Hilbert space. In general it isn’t, however, for our example and many others, it is
self-adjoint [116, 186]. This, on its own, is a big surprise. In a sense, a conjecture
is lurking here: for WX which define mirror Calabi-Yaus, the associated operator
is self-adjoint on L2(R). What is interesting is that the associated equations are a
difference equations, in our case

ψ(x+ iℏ) + ψ(x) + eiℏexψ(x− iℏ) = z−1/3ψ(x)

Turning back to ψ(x, ℏ) itself, trying to ensure it’s square-integrable leads to the
Heisenberg quantisation condition

ΠB(z, ℏ) = 2πℏ
(
n+

1

2

)
, n ∈ N0
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However, we know that, classically, ΠB = log2 z+ .... Consider writing −z−1/3 = eE.
The quantisation condition translates to

En ∼ n1/2

and the equation itself to

ÔKP2
ψn = eEnψn, ÔKP2

= ep̂ + ex̂ + e−p̂−x̂

With this estimate, we come to the crux of the TS/ST correspondence of [117], which
equates a strongly-coupled quantum spectral problem to the exact non-perturbative
completion of the topological string. Namely, let ρ̂ = Ô−1 be the inverse mirror
curve operator. Then, due to the estimate on the eigenvalues of Ô−1, for every
l ≥ 1,

TrH ρ̂
l =
∑
n≥0

e−lEn <∞

In other words, ρ̂ is trace-class. Crucial to the conjecture are the so-called fermionic
spectral traces

Z(N, ℏ) = Tr∧NH ρ̂ ∧ ... ∧ ρ̂︸ ︷︷ ︸
N times

=
∑

{ml|
∑

l lml=N}

∏
l

(−1)(l−1)ml(TrH ρ̂
l)ml

ml!lml

which naturally arise in the context of ABJM. Then we form the spectral determi-
nant

Ξ(κ) := det(1+ κρ̂) =
∏
n

(
1 + κe−En

)
= 1 +

∑
N≥1

Z(N, ℏ)κN

The main claim of [116, 186] is that the spectral determinant is entire in κ ∈ C. As
with the rest of the claims of this chapter, this must be established on a case by
case basis as a more general theory is lacking.

1.11.2 Conjectures on limiting behaviours
The spectral determinant admits three different limiting behaviours, its behaviour
there governed by distinct expansions. The first of these is the large-radius limit.
Let κ = eµ. Then, consider the scaling limit

µ→ ∞, ℏ → ∞,
µ

ℏ
:= t fixed

Then in this double scaling limit,

log Ξ(κ) ∼
∑
g≥0

Fg(t)ℏ2g−2

plus oscillatory contributions, where Fg(t) is the genus-g GW invariant. This corre-
sponds to the large-radius limit of the CY geometry, which corresponded to z >> 1
in our toy example. The second conjecture regards the so-called orbifold or dual
magnetic limit,

N → ∞, ℏ → ∞,
N

ℏ
:= λ fixed
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under which the coefficients Z(N, ℏ) of Ξ(κ) are conjectured to behave as

logZ(N, ℏ) ∼
∑
g≥0

FD
g (λ)ℏ2−2g

where
FD
g (λ) = cgλ

2−2g +
∑
n≥0

FD
n,gλ

n

are the dual GW invariants, defined around the "conifold point" λ = 0 where the
Kähler parameter of the A model vanishes. The first term is a pole, cg being a com-
binatorial factor. This is a resummation of the standard GW invariant generating
function. How are we to interpret this from the point of view of our toy geometry,
from the B model side? We present a geometric argument first. Using the birational
equivalence of an elliptic curve with its Jacobian, C ∼= Jac(C), we can write the
curve x2y + y2x+ z−1/3xy + 1 = 0 in its Weierstrass normal form as

y2 = x3 + ax+ b = x3 − 1 + 24z

48z4/3
x+

1 + 36z + 216z2

864z2

and calculate the discriminant

∆ = −16(4a3 + 27b2) = −27− z−1

Therefore there is a distinguished point in the moduli space, z = −1/27, at which
the curve becomes singular. The physical argument is as follows: in terms of z, the
Yukawa coupling has a pole(
dt

dz

)2
d3F

dt3
=

(
− 1

z3
+

18

z2
+

378

z
+ ...

)(
−1

z
+ 3z + 63z2 + ...

)
=

−1

3z3(1 + 27z)
+O(z)

at z = −1/27. At this point, the fermions acquire infinite mass, and the theory is
purely magnetic. Finally, the third distinguished point on the moduli space of our
toy CY is z → ∞, when the curve becomes y2 = x3 + 1/4 and the CY becomes
C3/Z3. This is the "orbifold point", and in fact this is just the expansion in small
κ = −z−1/3 from the original definition of the spectral determinant. Besides the
conjectural asymptotics, there is an exact conjecture

ΞX(e
µ) =

∑
n∈Z

eJX(µ+2πin,ℏ)

for any such local CY X, where JX is called the grand potential and is an involved
resummation of refined GW invariants along with BPS corrections. For ℏ = 2π,
symmetry enhancement turns the RHS into a theta function, and proofs become
possible [259].

1.11.3 Enter Dilog
The main strength of this formalism is the ability to exactly calculate the spectral
determinant. Our ability to do so so hinges on being able to invert the mirror curve
and obtain ρ̂, as well as performing the subsequent integral. To follow the calculation
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as in [166, 167], we introduce Fadeev’s quantum dilogarithm [85, 86], which is
morally a deformation of the exponential of the ordinary dilogarithm

∑
n x

n/n2,

φb(x) := exp

∫
R+i0

e−2ixy

4 sinh by sinh y
b

dy

y
, | Im{x}| < Re

{
b+ b−1

2

}
which circles around the pole at y = 0 to the upper half-plane. The relevant
property here is

φb(x− ib
2
)

φb(x+
ib
2
)
= 1 + e2πbx

Of course, we’re dealing with an operator with canonically conjugate variables
[x̂, ŷ] = iℏ. With some hindsight, we should consider for now a linearly transformed
set [q̂, p̂] = 2πib2. Then, using Taylor’s theorem,

eαp̂f(q̂)e−αp̂ = f(q̂ − 2πib2α)

we can write the quantum dilog’s recurrence relation as

1 + eq̂ =
1

φb(
q̂

2πb
+ ib

2
)
φb(

q̂

2πb
− ib

2
) = e

p̂
2

1

φb(
q̂

2πb
)
e−

p̂
2 e−

p̂
2φb(

q̂

2πb
)e

p̂
2

More strenuous exercise yields the identity we need to invert the mirror curve,
namely

e−
q̂
6

1

φb(
q̂

2πb
+ 2ib

3
)
e

p̂
3 (1 + e−p̂)e−

q̂
6φb(

q̂

2πb
− 2ib

3
) = ex̂ + ep̂ + e−x̂−p̂ = Ô

Finally, we can calculate the matrix element of the inverse mirror curve,

〈q1| ρ̂ |q2〉 = 〈q1|F1(q̂)
e

2p̂
3

1 + ep̂
F2(q̂) |q2〉

= F1(q1)F2(q2)

∫
dz

4π2b2
e

2z
3

1 + ez
e

iz
2πb2

(q1−q2)

= F1(q1)F2(q2)
1

4πb2
1

cosh
[
q1−q2
2b2

− iπ2

6

]
Finally, by the Cauchy determinant formula, we can calculate

Z(N, ℏ) =
1

N !

∫
dNx det

i,j
〈qi| ρ̂ |qj〉 =

1

N !

∫
dNx

(2π)N
eℏ

∑
i Re{V (xi)}

∏
i<j 2 sinh[2]

x1−x2

2∏
i,j 2 cosh

[
x1−x2

2
− iπ2

6

]
and check the conjectures hold. The result is a deformed O(2) matrix model, and
its spectral curve again is a level set of ex + ey + e−x−y [283] .

1.11.4 Further comments
Other examples are, conjecturally, all the anticanonical bundles of almost del Pezzo
surfaces. There are, in fact, only 16 possibilities, since all such nonlocal CY 3-folds
are built from reflective polygons. Indeed, toric geometry may be used here [65,
Prop. 8.2.7.]: if we want a global section of ω = X−1

1 dX1∧ ...∧X−1
n dXn, with {Xi}i
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the torus coordinates corresponding to a particular choice of basis of the lattice,
this is the same as O(−

∑
iDi) being trivial, with Di the toric divisors. This is

equivalent to
∑

iDi ∼ 0, which is equivalent to the existence of a u such that∑
i〈u, vi〉Di = 0, but this finally equivalent to 〈u, vi〉 = 0 ∀i, meaning all the vi are

coplanar. Of course, coplanarity ensures non-compactness. The fact that we need to
look at anticanonical bundles further restricts this to be a reflexive polytope by the
Batyrev-Borisov theorem. These are all genus 1 curves, since they necessarily have a
single interior point. However, the conifold may be reached by a limiting procedure
[128]. The standard procedure to build mirror curves then follows. For simplicity’s
sake, we focused on dP0 here, however, more can be said for F0 = P1 × P1. Indeed,
in a series of works [44, 45, 46, 231] my coauthors have described the links of the
spectral determinant with the tau function of Painlevé III3, Seiberg-Witten theory
of pure SU(2), and further generalisations to q-difference equations and 5d gauge
theory on R4 × S1. In this special case, we can see that quantisation of the curve
actually reduces to solving the Pöschl-Teller potential,

Eψ =
(
ep̂ + e−p̂ + ex̂ + e−x̂

)
ψ = ψ(x+iℏ)+ψ(x−iℏ)+2 cosh xψ(x) ≈ −ℏ2ψ′′+2 cosh xψ

as well as the simple harmonic oscillator when x is small. This can be generalised
further to anharmonic oscillators. Namely, we start from the topological string
(ep, ex), take the geometrical engineering limit to get to the Seiberg-Witten curve
(ep, x) and finally use Argyres-Douglas scaling to get quantum mechanics with an-
harmonic potentials (p, x). Provided the quantum mirror curve can be inverted,
this translates the difficulties of anharmonic potentials to an easier calculation in
the topological string, followed by nontrivial limits.

1.11.5 TS/Tau
The main interest in this work is, however, the conjecture

Ξ ∼ τ

for appropriate polytopes and isomonodromic systems. For X being the local P1 ×
P1, it was shown in [46] that the spectral determinant Ξ(z) satisfies the q-Painlevé
III3 equation in tau form. In this case, Ξ is explicitly given by the ABJM theory,
along with a dictionary which links q-shifts to rank-deformations. By shrinking the
M -theory circle, the spectral determinant reduces to the topological string and the
q-difference equation reduces to standard Painlevé III3 [44] and expresses Seiberg-
Witten theory as a Fermi gas, explicitly in terms of a matrix model. Since the
large-N expansion calculates the theory in the magnetic frame, one application of
this presentation is to probe the multi-monopole point as done in [69].

More generally, the TS/ST correspondence suggests a link between the spectral
determinant of the quantum Seiberg-Witten curve and the five dimensional NO
partition function [46]. Via geometric engineering [5, 169], M-theory compactified
on a local Calabi-Yau threefold defines a five dimensional N = 1 gauge theory,
whose Seiberg-Witten curve is identified with the mirror curve, while the topological
string partition function gets related to the Nekrasov partition function in a self-dual
Omega background [221].

The TS/ST correspondence was extended to higher genus curves [63, 64], which
turn out to be related to G = SU(N) N = 1 theory on R4

ϵ1,ϵ2
×S1, and it was shown

68 Fran Globlek



Introduction

that in this case the TS/tau correspondence holds as well [45]. For X corresponding
to SU(N), the Y N,0 geometry, a matrix model realisation was found by my co-author
Tomoki Nosaka [231] from mass-deformed ABJM.
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Chapter 2

Generalized Painlevé equations

2.1 Extending the Painlevé/Gauge correspondence
In the introduction we have seen how the Painlevé/Gauge correspondence means
the Kiev Ansatz for d = 4 N = 2 G = SU(2) super Yang-Mills theory on a self-
dual Omega-background gives the general solution of the corresponding Painlevé
equation in tau form.

Interpreted as a surface operator, we can associate two different tau functions
τ0,τ1 to the pure SU(2) theory, since |Z(G)| = 2. The shifts involved mean that
τ1(σ|t) = τ0(σ+

1
2
|t), which can be seen as a Bäcklund transformation. It turns out

they satisfy PIII3 in Toda form

∂2log t log τ0 = −t
1
2
τ 21
τ 20
,

∂2log t log τ1 = −t
1
2
τ 20
τ 21
.

which can be interpreted as surface operator RG flow. The first part of this section is
based on joint work with my advisors, Alessandro Tanzini and Giulio Bonelli [42, 43].
We worked to extend this Toda representation of the pure SU(2) Kiev Ansatz to
a more general group G. This was possible by starting with the Painlevé/Calogero
correspondence, which has a natural extension for any gauge group G, and is
known that appropriate Lax pairs of the elliptic Calogero-Moser systems furnish
the Seiberg-Witten curves by the SW/Integrable system correspondence. When
deautonoimised, they should therefore lift the theory to the Omega-background.
The resulting isomonodromic problem on the torus involves the whole root system.
This gets simplified if the Inosemtzev limit is taken, which takes the Calogero-Moser
problem to the Toda system involving only the extended positive roots of the Lang-
lands dual Lie algebra. At the same time, the torus geometry degenerates to that
corresponding to the pure gauge theory by AGT.

My key insight was to put the appropriate shifted Kiev Ansätze to those nodes
which correspond to elements of Z(G), which are the cominuscule weights. The
An system is therefore an anomaly, as every node has this property. What the
other nodes then represent is still a mystery – they seem to be composite surface
operators. In any case, they can be expressed in terms of the special nodes I selected.
Eliminating these middle-nodes leaves us with usually a single equation on the tau
functions of the cominiscule nodes. The form of the Kiev Ansatz is then enough
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for us to recursively solve for all of the equivariant volumes of instanton moduli
spaces, even when an ADHM description is unavailable, which is the case for the
exceptional algebras.

I have also generalised this to the 5-punctured sphere, which corresponds to a
certain degeneration of the Garnier system. The exact relation between these Toda
equations and the Gariner system is however unknown, and represents a promising
direction for future work.

In the second part I present some additional work. It is shown how to generalise
the results of the first part to q-difference equations which correspond to d = 5
N = 1 gauge. The relation with the blowup formulas is discussed. Finally, I
show how to extend the G = U(2) results (not SU(2)!) to an arbitrary amount of
fundamental hypermultiplets, including greater than four.

2.2 Surface operator flow
In this part we study the partition function of N = 2 super Yang Mills theories
with general simple gauge group G in presence of a surface defect. As mentioned
in 1.8, the latter is described by a two-dimensional N = (2, 2) gauged linear σ-
model living on the defect and coupled to the bulk four-dimensional theory. This
implies that the defect partition function obeys tt∗ equations [58], which for the
theories under consideration correspond to a de-autonomized Toda system. The
defect partition function is vector-valued according to the set of admissible boundary
conditions, labeled by the roots of the affine Langlands dual Lie algebra (ĝ)∨[121].
The deautonomization corresponds to studying the gauge theory in the self-dual Ω-
background (ε,−ε). The limit ε→ 0 reproduces the classical Seiberg-Witten theory
[252] which is known to be described by the autonomous Toda chain of type (Ĝ)∨

[111, 197] by the SW/Integrable systems correspondence.
The system of equations we study is the radial reduction of tt∗-equations which

describes complex deformations of a Z(G)-singularity, Z(G) being the center of the
gauge group. These are the equations of non-autonomous twisted affine Toda chain
of type (Ĝ)∨, where (Ĝ)∨ is the Langlands dual of the untwisted affine Kac-Moody
algebra Ĝ. In order to clarify the appeareance of the Langlands dual group, we start
from the analysis of the surface operators in the N = 2∗ theory in terms of the de-
autonomized Calogero system, whose limit to super Yang-Mills naturally produces
the relevant root system. Each node of the resulting affine Dynkin diagram defines
a surface operator, the associated τ -function being its vacuum expectation value.
A special rôle is played by the surface operators associated to the affine nodes.
These are simple surface operators whose monodromy is twisted by elements of the
center of the gauge group Z(G). As such, they are bounded by fractional ’t Hooft
lines and generate the corresponding one-form symmetry of the gauge theory. This
is manifest as a Z(G)-symmetry of the τ -system and will be used to simplify its
solution. Our analysis will be based on the observation that the surface operators
associated to affine nodes are described in a perturbative regime of the bulk gauge
theory and as such the partition function of the theory in their presence admits the
Ansatz (2.6).

The time flow of the non-autonomous system corresponds in the gauge theory
to the renormalisation group flow, the time playing the rôle of the gauge coupling
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constant. The system of equations produces recurrence relations for the coefficients
of expansion in the gauge coupling (2.6) thus providing a new effective algorithm
to calculate instanton contributions for all classical groups G. Actually, general
recursion formulae based on bilinear relations can be provided for the A,B and D
groups, while for gauge group of type C, E, F and G a case by case analysis is
needed.

On the mathematical side, the τ -functions we provide the general solution at
the canonical rays for the Jimbo-Miwa-Ueno isomonodromic deformation problem
[155, 156] on the sphere with two-irregular punctures for all classical groups, which
to the best of our knowledge was not known in the previous literature.

The recursion relations we obtain are indeed different from the blow-up equations
of [216] and further elaborated in [171]. The latter necessarily involve the knowledge
of the partition function in different Ω-backgrounds, which makes the recursion
relations and the results from blow-up equations more involved and difficult to
handle. Nonetheless, we expect a relation between the two approaches to follow
from surface defects blow-up relations. The isomonodromic τ -function for the sphere
with four regular punctures was obtained in a similar way from SU(2) gauge theory
with Nf = 4 in [153]. An analogous analysis for general classical groups is still
missing in the literature.

In particular we study the cases of twisted affine Lie algebrae and linear quiver
theories. We find that the τ function for the twisted affine Lie algebra BC1 inter-
estingly satisfies the radial reduction of Bullough-Dodd equations, and it is related
to the v.e.v. of surface defect in N = 2 SU(2) gauge theory with one massless hy-
permultiplet in the fundamental representation. We also study the BC2 for which
we do not have at present a gauge theory interpretation.

We conjecture bilinear relations satisfied by the τ -functions of SU(2) linear
quiver theories which can be obtained from M-theory compactification on a Rie-
mann sphere with two irregular punctures and n − 2 regular ones [96]. From the
mathematical viewpoint these τ functions describe isomonodromic deformations of
SL(2,C) flat connections on the very same Riemann sphere, and can be obtained
from a suitable confluence limit of the Garnier system on the Riemann sphere with
n + 2 regular singularities. While the bilinear equations we write govern just the
isomonodromic flow in the moduli of the two irregular punctures, we observe that
a general solution can be found by imposing consistency of the system in suitable
asymptotic limits. It would be interesting to complete the τ -system with the equa-
tions governing the dependence on the moduli of the regular punctures and study
the relation of the results we find with bilinear systems for the τ -functions of the
Garnier system [267].

2.2.1 Isomonodromic deformations
In this section we derive the relevant equations on the τ -functions for the Toda
system related to any simple classical group. These are derived starting from the
elliptic case in which Langlands duality is manifest.

On the one-pointed torus, C1,1 ∼= Tτ
∼= C/Z⊕τZ, where τ ∈ M ∼= (H+)

PSL(2,Z)∪
{
√
−1∞} denotes a complex structure and corresponds to the isomonodromic time

τ 1. The isomonodromic system is given by a Fuchsian system together with an
1Confusion with the same label used for τ functions will not arise; in any case, we will soon be
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isomonodromic flow

∂zΦ(z) = L(z)Φ(z), (2πi)∂τΦ(z) = −M(z)Φ(z)

where z ∈ C1,1 [260]. The related autonomous integrable system is the elliptic
Calogero-Moser system [182] which in gauge theory corresponds to N = 2∗. The
reason for starting with an extra adjoint hypermultiplet as opposed to the pure
theory is that the limit to pure theory gives the context as to why the Langland dual
extended root system plays a rôle, since these are the only roots whose contributions
survives in the decoupling limit to the de-autonomized Toda system.

The deautonomized elliptic Calogero-Moser system can be formulated for any
complex simple Lie algebra g of finite rank k, whose root system we realize in a
finite dimensional C-vector space V equipped with an explicit basis {ei}i=1,...,dimV ,
so the root system is R ⊆ V . We identify V ∨ ∼= V using the canonical product.
Let φ : M → V be a vector valued function satisfying the deautonomized elliptic
Calogero-Moser system

(2π
√
−1)∂2τφ = −M

2

2

∑
α∈R

℘′(α ·φ|τ)α

where ℘′(z|τ) denotes the z-derivative of the Weierstrass elliptic function, and M
is the mass of the adjoint hypermultiplet. There is a well-defined autonomization
procedure which maps the isomonodromic to the integrable system [260]. These
deautonomized systems are quite non-trivial. Indeed, in [191] the so-called elliptic
sixth Painlevé transcendent was defined as the solution to the equation ∂2τz =
−℘′(z|τ)/(8π)2, and this is the simplest such system, corresponding to the Lie
algebra g = A1. Let us briefly recall how the autonomization procedure works.
Essentially, here we need to pass from the full problem formulated on the moduli
space M of the one-punctured torus with complex structure τ , Tτ , to its tangent
space at some fixed complex structure τ0, TM|Tτ0

∼= H0(Tτ0 ,Ω
1) ∼= C. As described

in [188], we take τ = τ0 + εt, ∂τ 7→ ε∂τ0 , and take the ε → 0 limit, perhaps ridding
ourselves of some convenient 2πi factors as well. In the context of gauge theory,
this limit corresponds to turning off the Omega-background.

Let ρ∨ and h∨ denote the dual Weyl vector and dual Coxeter number, respec-
tively. The decoupling of the hypermultiplet which brings to pure N = 2 Super
Yang-Mills or non-conformal AGT [196] is the Inosemtsev limit, achieved by setting

τ =
1

2π
√
−1

log

(
Λ

M

)2h∨

φ 7→ φ+
1

2π
√
−1

1

h∨
log

(
Λ

M

)2h∨

· ρ∨

and then sending M → ∞. Λ ∈ C plays the role of the time.
To perform the limit, we quote the q-series of the relevant elliptic function [257],

which can be proved using the Lipschitz summation formula [282, § 2.2],

(2π
√
−1)−3℘′(z|τ) =

∑
n≥0

qnwz
1 + qnwz

(1− qnwz)3
−
∑
n≥1

qnw−z
1 + qnw−z

(1− qnw−z)3

ditching this time variable for another
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where q = e2π
√
−1τ is the so-called nome and wz = e2π

√
−1z. To perform the limit,

first note that we may restrict ourselves to positive roots, as ℘′(−α,Q|τ)(−α) =
℘′(α,Q|τ)α. Second, examine the powers of (Λ/M)2, and use the properties of
positive simple coroots and the longest coroot given by the level function, as follows.
Following [70], define the level function ` : R → R by α 7→ `(α) := 〈ρ∨,α〉, where
ρ∨ := 1

2

∑r
j=1 α

∨
j ∈ g∨ is the dual Weyl vector. Then, `(α∨) = 1 if and only

if α ∈ ∆+, and `(α∨) = h∨ − 1 if and only if α = θ∨, where h∨ is the dual
Coxeter number. Examining the terms remaining after the limit, we see we have
contributions either from positive simple coroots, or from θ∨.

The elliptic system reduces to a trigonometric one, and only the roots corre-
sponding to the dual extended root system survive, namely the ones whose affine
Cartan matrix got transposed. The significance of the dual affine system to SW
theory is well-known [73, 197]. The resulting system is

∂2log tφ = −t1/h∨ ∑
α∈∆̂+

α∨eα
∨·φ (2.1)

where t := Λ2h∨ , ∆̂+ = {θ} ∪∆+ are the extended positive roots, and we redefined
(2πi)φ 7→ φ for simplicity. Once the asymptotic form of the solution is specified,
the solution can be found by series expansion with a non zero (possibly infinite)
convergence radius. The natural choice is to start with the homogenous solution
and let φ = a + log t · b + ξ for constant a and b. The prefactor t1/h∨ can be
eliminated by setting b = σ − 1

h∨ρ
∨. After this, a solution in terms of a power

series in t and {tσi}ki=1 can be found recursively from

∂2log tξ = θ∨e−θ∨·at1−θ∨·σe−θ·ξ −
∑

α∈∆+

α∨eα
∨·atα

∨·σeα
∨·ξ

from which we see that to ensure convergence, σ ∈ W∨
fund., the fundamental Weyl

alcove of the dual root system, as

1− θ∨ · σ > 0

α∨
i · σ > 0, i = 1, ..., r

}
⇒ σ ∈ W∨

fund.

Therefore, solutions are in bijection with points of W∨
fund..

The choice of the affine root is not unique if outer automorphisms of the affine
Dynkin diagram exist. For the simplest case A1, there is one root which we realize
as α = (1,−1) and the automorphism is the reflection around the origin. Then we
have ρ = 1/2 · α = (1/2,−1/2) and h∨ = 2, so

b =

(
b1
b2

)
= σ − 1

h∨
ρ∨ =

(
σ1 − 1/4
σ2 + 1/4

)
7→
(
b2
b1

)
=

(
σ2 + 1/4
σ1 − 1/4

)
The effect of the reflection is σ1 7→ σ2 + 1/2, σ2 7→ σ1 − 1/2. We should really be
specializing to the sl2 slice σ1 + σ2 = 0, which we often neglect to make expressions
simpler; setting σ = σ1 = −σ2, however, we see that this is really the Bäcklund
transformation τ(σ|t) 7→ τ(1/2− σ|t) of Painlevé III3, analyzed in detail in [30]. In
An, cyclic transformations may be seen to shift σ by fundamental weights. We use
this redundant to solve the system, since as we will see it reduces the order of the
equations drastically.
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2.2.2 The Hirota relations
For any α ∈ ∆̂+ we define the formal power series τα ∈ C [[t, tσ1 , ..., tσk ]] associated
to φ as a solution to the following equation

∂2log t log τα(φ, t) = t
1
hg eα

∨·φ (2.2)

up to constant and logarithmic terms.
We claim that the τ functions generate the Hamiltonian, in the sense that they

satisfy ∑
α∈∆̂+

∂log t log τα = h∨tH

up to a constant, where

tH(φ,π, t) =
1

2
π2 + t

1
h∨
∑

α∈∆̂+

eα
∨·φ

is the Hamiltonian of the deautonomised system.Indeed, we check that

(t∂t) (tH) = (t∂t)

π2

2
+ t

1
h∨
∑

α∈∆̂+

eα
∨·φ


= π · ∂log tπ +

t 1
h∨
∑

α∈∆̂+

α∨eα
∨·φ

 · ∂log tφ+
1

h∨
t

1
h∨
∑

α∈∆̂+

eα
∨·φ

and since the first two terms vanish on-shell, so the claim follows. Equipped with
these τ functions, we note that (2.1) can be rewritten as

∂2log t

(
φ+

∑
j

α∨
j log ταj

)
= 0

We can integrate this and then reconstruct the solution φ in terms of τ functions
from the components in the expansion φ =

∑
i ϕiei, namely

ϕi = c1,i + c2,i log t− log
∏

α∈∆̂+

[τα(φ)]
α·ei

where the integration constants c1,2 follow from the ambiguity in the definition
of the τ functions. Feeding back into (2.2), the isomonodromic system may be
reformulated purely in terms of the τ functions as

∂2log t log τα = −t
1

h∨
∏

β∈∆̂+

[τα]
−β∨·α∨

(2.3)

were the minus sign in the R.H.S. of (2.3) is obtained by a rescaling the time
variable as t → e

√
−1πh∨

t. We will find it useful to rewrite this expression in terms
of a logarithmic Hirota derivative defined as

D2(f) = f 2∂2log t log f = f∂2log tf − (∂log tf)
2
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and satisfying

D2(fn) = 2nf 2(n−1)D2(fn)

D2(f · g) = f 2D2(g) + g2D2(f) .

We can then rewrite the system as

τα
α∨·α∨−2D2(τα) = −t

1
h∨
∏
β 6=α

[τβ]
−β∨·α∨

(2.4)

where the factor of τββ∨·β∨ has been extracted from the product and carried to the
other side and the definition of the Hirota derivative was used. Moreover, using the
first Hirota derivative identity, we get

τα
α∨·α∨−2D2(τα) =

2

α∨ ·α∨D
2([τα]

α∨·α∨
2 ) = −t

1
h∨
∏
β 6=α

[τβ]
β∨·β∨

2
(−α∨· 2β∨

β∨·β∨ )

and redefining [τα]
α∨·α∨

2 7→ τα for every root α we finally get the equation

D2(τα) = −α∨ ·α∨

2
t1/h

∨ ∏
β∈∆̂,β 6=α

[τβ]
−α∨·β , (2.5)

The above redefinition leaves unchanged the τ -functions corresponding to miniscule
coweights. By the ambiguity in the constants of integration, both (2.3) and (2.4)
may be modified by a constant or a power of t. Further, we will be writing D4 :=
D2 ◦ D2, D2n := D2 ◦ D2n−2. Finally, the τ function associated to the constant
solution φ0 = a is immediate from (2.2),

τα(φ0, t) = exp
{
(h∨)2t

1
h∨ eα·a

}
Eq. (2.5) is the de-autonomization of the τ -form of the standard Toda integrable

system. From [111, 197] it is known that this governs the classical Seiberg-Witten
(SW) theory [251]. The de-autonomization is induced by coupling the theory to
a self-dual Ω-background (ε1, ε2) = (ε,−ε) [47]. In the autonomous limit ε → 0,
the relevant τ -functions boil down to Riemann θ-functions on the classical SW
curve [39]. These were used to provide recursion relations on the coefficients of the
expansion of the SW prepotential in [82].

The actual form of equations (2.5) depends on the Dynkin diagram. In partic-
ular, these reduce to bilinear equations for the classical groups A, B and D, which
we solve via general recursion relations. Instead, for C, E, F and G groups the
equations of the τ -system are of higher order and must be studied by a case by case
analysis. The τ -system displays a finite symmetry generated by the center of the
group G, namely

g An Bn Cn D2n D2n+1 En F4 G2

Z(G) Zn+1 Z2 Z2 Z2 × Z2 Z4 Z9−n 1 1

The center is isomorphic to the coset of the affine coweight lattice by the affine
coroot lattice, and coincides with the automorphism group of the affine Dynkin
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diagram. As in 2, the coweights, and by extension the lattice cosets, corresponding
to these nodes are the minuscule coweights. We recall that a representation of g is
minuscule if all its weights form a single Weyl-orbit. This remark will be crucial to
solve the τ -system.

The τ -functions corresponding to the affine nodes, namely the ones which can
be removed from the Dynkin diagram while leaving behind that of an irreducible
simple Lie algebra, play a special rôle. In the gauge theory interpretation of the
Introduction, these are related to simple surface operators associated to elements
of the center Z(G), and are bounded by fractional ’t Hooft lines. As such, they are
the generators of the one-form symmetry of the corresponding gauge theory, [98].
Since their magnetic charge is defined modulo the magnetic root lattice, a natural
Ansatz for their expectation value is

ταaff (σ,η|κgt) =
∑

n∈Q∨
aff

e2πiη·nt
1
2
(σ+n)2B(σ + n|t) (2.6)

where B(σ|t) = B0(σ)
∑

i≥0 t
iZi(σ) with Z0(σ) ≡ 1 and Q∨

aff = λ∨
aff+Q

∨, Q∨ being
the coroot lattice equipped with the canonical inner product normalized such that
the norm of the short coroots is 2, and (λ∨

aff,α) = δαaff,α for any non-extended
simple root α. The constant κg = (−ng)

rg,s , where ng is the ratio of the squares of
long vs. short roots and rg,s is the number of short simple roots. For simply laced,
all roots are long and κg = 1.

In the An case, (2.6) is known as the Kiev Ansatz. In particular, in the A1

case, it was used to give the general solution of Painlevé III3 equation in [152] and
further analysed in [203]. It was crucial for these results to identify the expansion
coefficients of (2.6) with the full Nekrasov partition function in the self-dual Ω-
background. We will now show that this still holds for general classical groups.
More precisely, this follows upon the identification σ = a/ε, where a is the Cartan
parameter of the gauge theory. Let us remark that the variables η,σ ∈ Q∨ are the
integration constants of the second order differential equations (2.5) and correspond
to the initial position and velocity of the de-autonomized Toda particle.

Let us set now the boundary conditions which we impose to the solutions of
equations (2.5). We consider the asymptotic behaviour of the solutions at t → 0
and σ → ∞ as

log(B0) ∼ −1

4

∑
r∈R

(r · σ)2 log (r · σ)2 (2.7)

up to quadratic and log-terms.
Notice that the τ -system knows itself the one-loop exactness of the N = 2 gauge

theory! Indeed, if one chooses a more general ansatz for the Wilsonian effective
action as log(B0) ∼

∑
r∈R cn,m(r · σ)2n log ((r · σ)2)

m, then the consistency of the
equation itself implies that (n,m) = (1, 1) and (n,m) = (2, 0) are the only allowed
terms.

We will show that the solution of (2.5) which satisfies the above asymptotic
condition is

B0(σ) = Z1−loop(σ) ≡
∏
r∈R

1

G(1 + r · σ)
(2.8)

2Bourbaki [Lie gps Ch. VIII §7]
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where G(z) is the Barnes’ G-function and R is the adjoint representation of the
group G. The expansion of the above function matches the one-loop gauge theory
result upon the appropriate identification of the log-branch. This reads, in the
gauge theory variables, as ln

[√
−1r · a/Λ

]
∈ R and in the An case matches the

canonical Stokes rays obtained in [118]. Eq.(2.8) corresponds to the 1-loop term
in the self-dual Ω-background. To see this more clearly, recall the perturbative
Coleman-Weinberg 1-loop term for a massless hypermultiplet in 4 dimensions with
IR regulator µ,

F1 loop(σ) =
3

4
trσ2 − 1

4
trσ2 log

(
σ

µ

)2

=

∫ ∞

µ

ds

s3
tr e−sσ +O(

1

µ2
)

where the trace is taken in the relevant representation. In the self-dual Ω-background
with parameter ε, this gets deformed to∫ ∞

µ

ds

s

−ε2 · tr e−sσ

(1− esϵ)(1− e−sϵ)

which we can write in terms of the Barnes’ G function by using its Lévy-Khintchine
type representation valid for |z| < 1

1

G(1 + z)
= exp

{
− log 2π − 1

2
z +

1 + γ

2
z2 −

∫ ∞

0

ds

s

e−zs − 1 + zs− 1
2
s2z2

(1− es)(1− e−s)

}
where the substractions in the integrand serve as an infrared regulator. For a general
gauge group in the Coulomb phase, tracing over the Cartan yields

eF1-loop = exp

{∫ ∞

µ

ds

s

−ε2 · trR e−sσ

(1− esϵ)(1− e−sϵ)

}
⇝
∏
α∈R

1

G(1 + σ ·α)
=: B0(σ)

The most important property of this expression is that, given some β ∈ R∨,

B0(σ + β) = B0(σ)
∏

α∈R,n≥1
α·β=n

(−1)bn/2cΓ(−α · σ)n

Γ(α · σ)n(α · σ)n
n−1∏
k=1

(α · σ + k)2n−2k

(2.9)

where we can pick only positive n’s since the product runs over the whole root
system.

2.2.3 The operators Y n

Besides the Hirota derivatives, we will make frequent use of the operators recursively
defined as

Y 1(f) = f (2.10)
Y 2(f) = D2(f)

Y n(f) = (Y n−2(f))−1D2(Y n−1(f)), n ≥ 2

Besides being shorthands, their utility consists in the property that they act on a
formal power series as

Y n(
∑
i

yit
xi) =

∑
i1,...,in

n∏
j=1

yij t
xij

n∏
k<l=1

(xik − xil)
2 (2.11)
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It is easy to calculate by hand that is true for n = 2. For n > 2, suppose we only
have a total of n distinct exponents xin in the sum

∑
i yit

xi . Then if we assume
(2.11) holds for n−1, Y n−1 will by assumption have only nCn−1 = n terms, differring
by one pair of indices. Without loss of generality, consider two terms with the last
index labelled differently. That is, let xsame :=

∑n−2
k=1 xik and xin−1 6= xin . By

assumption of the induction we have that in applying Y n−1 to
∑

i yit
xi we end up

with two different terms

c1 t
xsame+xn−1 , c2 t

xsame+xn ∈ Y n−1(
∑
i

yit
xi)

where the coefficients c1,2 are

c1 = yin−1

n−2∏
k=1

(xik − xin−1)
2 · csame

c2 = yin

n−2∏
k=1

(xik − xin)
2 · csame

where

csame =
n−2∏
j=1

yij

n−2∏
k<l=1

(xik − xil)
2

comes from the exponents purely inside xsame. Considering the application of D2 to
just those two terms we obtain

D2
(
c1csamet

xsame+xin−1 + c2csamet
xsame+xin

)
= c1c2c

2
same(xin−1 − xin)

2t2xsame+xin−1
+xin

which we can write as
n−2∏
j=1

yij t
xij

n−2∏
k<l=1

(xik − xil)
2 ·

n∏
j=1

yij t
xij

n∏
k<l=1

(xik − xil)
2

=
n−2∏
j=1

yij t
xij

n−2∏
k<l=1

(xik − xil)
2 · Y n(

∑
i

yit
xi)

and in the last line we’ve used (2.11) in this particular case of only n distinct
exponents. The term in front explicitly lacks the pair of indices we chose. Now if we
extend by linearly to all such pairs, we see that we have shown that D2(Y n−1(f)) =
Y n−2(f)Y n(f). But now we are done since we can reduce the general case of more
than n distinct exponents to this one by multilinearity.

2.2.4 The Lie algebra Zoo
2.2.4.1 An

τ0

τ1 τj−1 τj τj+1 τn
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The An case is the simplest but already illustrates most of the ideas of our anal-
ysis. The simplification in this case comes from the fact that every node of the
extended Dynkin diagram corresponds to a miniscule (co)weight and that the re-
sulting equations are strictly bilinear, none of which are true in general for different
algebras.

We realise the roots using an orthonormal basis {ei} of Rn+1 as {±(ei− ej)} for
i 6= j. The algebra is simply laced so the coroot lattice is the root lattice and is

Q∨ = Q = {
n+1∑
i=1

ciei|
n+1∑
i=1

ci = 0}, while the fundamental weights

λi = (1i, 0n+1−i)− i

n+ 1
(1n+1) ,

are all minuscule. Here (1p, 0n+1−p) stands for a vector whose first p entries are 1
and the remaining entries vanish, while in (1n+1) all entries are 1. Moreover we
label the τ -functions as ταj

≡ τj and identify τj = τn+1+j periodically. Then the
τ -system can be written succinctly as

D2(τj) = −t
1

n+1 τj−1τj+1 . (2.12)

Due to the Zn+1 outer automorphism group of the Dynkin diagram, each of the
nodes of An can be taken as the affine one so that the corresponding τ -functions
can be expressed through the Kiev Ansatz (2.6). Therefore, all the τ -functions are
determined by a single one, say τ0, as τj = τ0|Q7→Qj

. Owing to the Zn+1 symmetry, it
is enough to solve (2.12) corresponding to j = 0. Henceforth we adopt the shorthand
f(y ± x) ≡ f(y + x)f(y − x). The Ansatz (2.6) for τ0 reads

τ0(σ,η|t) =
∑

n∈Q, i≥0

e2π
√
−1n·ηt

1
2
(σ+n)2+iB0(σ + n)Zi(σ + n) (2.13)

It is necessary to discuss the effect of shifting the lattice Q by λi, since we explicitly
write the shifts λi and simplify them, instead of considering three different lattices.
In the Ansatz, the initial conditions η,σ ∈ Rn+1, along with the whole root system
and all n ∈ Q as such, are orthogonal to the (1n+1) direction. Therefore, σ · λ1 =
σ · e1, σ · λn = −σ · e1. Therefore, B0(σ) and Zi(σ) will be fixed by functional
and recursive relations which involve only ±e1, as only such inner products enter.
Therefore, we will write, e.g. B0(σ + n + λ1) = B0(σ + n + e1). With these and
some other simplifications, Inserting the Kiev Ansatz (2.13) into (2.12) gives us∑
n1,n2∈Q
i1,i2≥0

e2π
√
−1(n1+n2)·ηt

1
2
n2
1+

1
2
n2
2+i1+i2+σ·(n1+n2)

(
1

2
n2
1 −

1

2
n2
2 + i1 − i2 + σ · (n1 − n2)

)2

×B0(σ + n1)B0(σ + n2)Zi1(σ + n1)Zi2(σ + n2)

= −
∑

m1,m2∈Q
j1,j2≥0

e2π
√
−1(m1+m2)·ηt1+

1
2
m2

1+
1
2
m2

2+e1·(m1−m2)+j1+j2+σ·(m1+m2)×

B0(σ +m1 + e1)B0(σ +m2 − e1)Zj1(σ +m1 + e1)Zj2(σ +m2 − e1)

This is solved as a power series in t, tσ1 , ..., tσn . To fix B0(σ), we look at the lowest
order. The lowest order is linear in t and produces the quadratic constraint

1

2
n2
1 +

1

2
n2
2 + i1 + i2 = 1 +

1

2
m2

1 +
1

2
m2

2 + e1 · (m1 −m2) + j1 + j2 = 1 (2.14)
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as well as n+1 linear constraints on the root lattice variables (n1,n2) and (m1,m2).
Let us fix p, q ∈ {0, ...n + 1}, p 6= q and look for terms with tσp−σq . The linear
constrains are n1 + n2 = m1 + m2 = ep − eq. Up to Weyl reflections, the only
solution to the above mentioned constraints is given by n1 = ep − eq, n2 = 0 and
m1 = ep − e1, m2 = −eq + e1, with is and js in (2.14) vanishing, leading to the
functional equation

(1 + (ep − eq) · σ)2B0(σ + ep − eq)B0(σ) = −B0(σ + ep)B0(σ − eq) . (2.15)

Now we suppose that B0(σ) = f(σ)
∏

r∈R
1

G(1+r·σ)
. First of all we show that of

ratios of Γ-functions which arise from manipulating the Barnes’ G-functions cancels.
Namely, consider, for β ∈ Q∨ + λ∨ in a general Lie algebra

Γ̂(β) :=
∏

α∈R,n≥1
α·β=n

(
Γ[−α · σ]
Γ[α · σ]

)n

which is the product of Γ-functions in (2.9). Noting that

Γ̂(β) =
∏
α∈R
α·β≥0

(
Γ[−α · σ]
Γ[α · σ]

)α·β

=
∏
α∈R
α·β≥0

(
1

Γ[α · σ]

)α·β (
1

Γ[−α · σ]

)−α·β

=
∏
α∈R

(
1

Γ[α · σ]

)α·β

we get
Γ̂(β1)Γ̂(β2) = Γ̂(β1 + β2) .

In particular if
∑

k βk =
∑

k γk, which corresponds to the linear constrains,∏
k

Γ̂(βk) = Γ̂(
∑
k

βk) = Γ̂(
∑
k

γk) =
∏
k

Γ̂(γk)

Therefore, these products of Γ-functions cancels from all formulas, as we obtain
all of them by matching equal powers of tσ1 , ..., tσn . This discussion is valid for
all Lie algebras. For the An case, the LHS of (2.15), after discarding products of
Γ-functions, becomes

(1 + σp − σq)
2 f(σ + ep − eq)f(σ)

−(σp − σq)2(1 + σp − σq)2
∏

β·(ep−eq)=1

β · σ
= − f(σ + ep − eq)f(σ)

(σp − σq)2
∏

p 6=k 6=q

(σ2
p − σ2

k)(σ
2
k − σ2

q )
.

This has to equal the RHS

− f(σ + ep)∏
k 6=p

(σ2
p − σ2

k)

f(σ − eq)∏
k 6=q

(σ2
k − σ2

q )
.

Simple arithmetics converts this to f(σ+ ep − eq)f(σ) = f(σ+ ep)f(σ− eq) which
implies that f is periodic on the lattice. The asymptotic condition (2.7) reads as
f ∼ 1 when σ → ∞, so that f = 1.
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The higher order terms in t, tσ1 , ..., tσn provide the recursion relations

k2Zk(σ) = −
∑

n2+j1+j2=k
n∈e1+Q, j1,2<k

B0(σ ± n)

B0(σ)2
Zj2(σ − n)Zj1(σ + n)

+
∑

n2+i1+i2=k
n∈Q, i1,2<k

(i1 − i2 + 2n · σ)2 B0(σ ± n)

B0(σ)2
Zi1(σ + n)Zi2(σ − n) ,

where B0(σ) is given by (2.8). In particular, k = 1 gives the simple expression

Z1(σ) = −
n+1∑
i=1

B0(σ ± ei)

B0(σ)2
= (−1)n+1

n+1∑
i=1

1∏
j 6=i(σi − σj)2

.

Upon abbreviating σij = σi − σj, the k = 2 term gives

Z2(σ) = −1

4

n+1∑
i=1

B0(σ ± ei)

B0(σ)2
[Z1(σ+ei)+Z1(σ−ei)]+

n+1∑
i<j

(σi−σj)2
B0(σ ± (ei − ej))

B0(σ)2

which we can write as

Z2(σ) =
1

4

∑
i

1∏
j 6=i σ

2
ij

(∑
k

1∏
l 6=k(σkl + δkl − δli)2

+
1∏

l 6=k(σkl − δkl + δli)2

)
−
∑
i<j

1

(σij + 1)2(σij − 1)2σ2
ij

∏
i 6=k 6=j σ

2
ikσ

2
jk

=
1

4

∑
i

1∏
k 6=i σ

2
ki ·
∏

k 6=i(σki − 1)2
+

1

4

∑
i

1∏
k 6=i σ

2
ki ·
∏

k 6=i(σki + 1)2

+
∑
i<j

σ2
ij

(σ2
ij − 1)2

1∏
k 6=i σ

2
ki ·
∏

k 6=j σ
2
kj

where in the second step we cancelled the off-diagonal terms in the double prod-
uct, to simplify the comparison with Nekrasov formulae for k = 2 for ε1 = −ε2 = 1.
Indeed, the three sums above correspond exactly to ZSU(n+1)(~Y ) of (1.4) with ~Y
having two boxes or two boxes in the i-th position and the last double sum is
over ~Y such that one box is in the i-th and another in the j-th position. These are
all the possible tuples ~Y such that |~Y | = 2.
To summarise, the above coincide with one and two instanton contributions to the
SU(n + 1) Nekrasov partition function as computed from supersymmetric local-
ization [221, 225]. Let us remark that the use of the τ -system (2.12) provides a
completely independent tool to compute all instanton corrections just starting from
the asymptotic behaviour (2.7). This procedure extends to all classical groups.

2.2.4.2 Bn, Dn

Due to our strategy of solving the problem by attaching Kiev Ansätze to nodes
corresponding to minuscule coweights, we treat the algebras Bn and Dn simultane-
ously. The coroot lattices are likewise the same, so the only difference between Bn

to Dn is the asymptotic condition the extra roots of Bn impose.
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τ0

τ1

τ2
τ3 τn−3

τn−2

τn−1

τn

Dn is a simply laced algebra, whose coroot lattice is the checkerboard lattice Q =
Q∨ = {

∑n
i=1 ciei|

∑n
i=1 ci ∈ 2Z}. In this section we consider only n ≥ 4 and leave the

special cases of n = 2, 3 to a separate section. There are four minuscule weights,
λ0 = (0n), λ1 = (1, 0n−1), λn−1 = ((1

2
)n−1,−1

2
), λn = ((1

2
)n−1,+1

2
) and these

correspond to the "legs" of the affine diagram. Whatever the rank we consider, we
always have the consistency conditions

D2(τ0) = D2(τ1), D2(τn−1) = D2(τn) (2.16)

which immediately follow from the equations D2(τ0) = −t1/2nτ2, D2(τ1) = −t1/2nτ2
and the analogue ones at the other end of the diagram. The second consistency
condition is morally just the first one with σ shifted by ((1

2
)n). In the special case

n = 4 we have a further equality, due to the enhanced symmetry of D4,

D2(τ0) = D2(τ1) = D2(τ3) = D2(τ4).

Practically, however, the first condition is sufficient to solve the problem.

τ0

τ1

τ2
τ3 τn−2 τn−1 τn

Bn is not simply laced. In addition to the roots of the corresponding Dn, {ei ±
ej}i 6=j, it has shorter roots {ei}. This is the first case, however, in which we have to
worry about looking at the Langlands dual algebra, and send each root to the coroot
via R 3 α 7→ 2α/(α ·α) ∈ R∨. Therefore, the extended Dynkin diagram above has
reversed arrows compared to the usual, since the roots {ei} get rescaled to {2ei}.
The coroot lattice is still the checkerboard lattice Q∨ = {

∑n
i=1 ciei|

∑n
i=1 ci ∈ 2Z} of

Dn, and the two minuscule weights are λ∨
0 = (0n) and λ∨

1 = (1, 0n−1), corresponding
to the "antennae" of the new diagram, provided n > 3. The additional Z2 symmetry
of Dn is broken. The τ -system coincides with that of Dn+1, with the modification
that (i) there is no τn+1 node and (ii) that

D2(τn−1) = −2t
1

2n−1 τn−2τn, D2(τn) = −t
1

2n−1 τ 2n−1.

The case n = 3 is discussed separately along with the algebra C2 in section 2.2.4.7.
We limit the present discussion to n > 3 so the analysis proceeds as for Dn, except
we can only consider the first equation in (2.16). This unifies the approach to both
Dn and Bn. Explicitly, inserting (2.6) and τ1(σ|t) = τ0(σ + λ1|t) into the first
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equation of (2.16) we get∑
n1,n2∈Q∨

i1,i2≥0

e2π
√
−1(n1+n2)·ηt

1
2
n2
1+

1
2
n2
2+i1+i2+σ·(n1+n2)

(
1

2
n2
1 −

1

2
n2
2 + i1 − i2 + σ · (n1 − n2)

)2

B0(σ + n1)B0(σ + n2)Zi1(σ + n1)Zi2(σ + n2)

=
∑

m1,m2∈Q∨

j1,j2≥0

e2π
√
−1(m1+m2)·ηt1+

1
2
m2

1+
1
2
m2

2+λ1·(m1+m2)+j1+j2+σ·(m1+m2+2λ1)

(
1

2
m2

1 −
1

2
m2

2 + j1 − j2 + (σ + λ1) · (m1 −m2)

)2

B0(σ +m1 + λ1)B0(σ +m2 + λ1)Zj1(σ +m1 + λ1)Zj2(σ +m2 + λ1)

In the following, p, q = 1, ..., n, p 6= q, and following the discussion in the previous
section, we look for the lowest terms in powers of t and {tσi}. Explicitly, the term to
consider is t1+σ·(ep+eq), which we got by putting n1 = ep+eq and n2 = 0 on the LHS,
up to symmetry. To get this term we need to impose m1 = ep− e1, m2 = eq − e1 on
the RHS, with all i’s and j’s vanishing. The functional equation we get, analogous
to (2.15), is

(1 + (ep + eq) ·σ)2B0(σ)B0(σ+ ep + eq) = ((ep − eq) · σ)2B0(σ+ ep)B0(σ+ eq) .

The two cases are distinguished by the different asymptotic conditions (2.7) the
root systems impose. Indeed, we have

B
[Dn]
0 (σ) =

n∏
i<j

1

G(1± σi ± σj)

B
[Bn]
0 (σ) =

(
n∏

k=1

1

G(1± σk)

)
B

[Dn]
0 (σ)

One can show that the large σ asymptotics of these different solutions are consistent
with the full τ system, not only the reduced consistency condition we are consider-
ing. Next, since the equation and the Ansatz are the same, the recursion relations
are as well, and turn out to be

k2Zk(σ) =
∑

(n−λ1)2+j1+j2=k
n∈λ1+Q∨ ,j1,2<k

Zj1(σ + n)Zj2(σ − n) (j1 − j2 + 2n · σ)2 B0(σ ± n)

B0(σ)2

−
∑

n2+i1+i2=k
n∈Q∨, i1,2<k

Zj1(σ + n)× Zj2(σ − n) (i1 − i2 + 2n · σ)2 B0(σ ± n)

B0(σ)2
(2.17)

This result is in line with the contour integral formulae for the relevant Nekrasov
partition functions. Indeed the poles in the Dn and Bn cases are the same, but
with different residues, as noticed in [193]. From the above recursion relation we
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can compute the 1-instanton terms

Z1(σ) =
n∑

k=1

4σ2
k

B0(σ ± ek)

B0(σ)2
=


∑n

k=1
−4∏

j ̸=k

(σ2
k−σ2

j )
2 , Bn∑n

k=1

4σ2
k∏

j ̸=k
(σ2

k−σ2
j )

2 , Dn

and the 2-instantons

Z2(σ) =
∑

α∈Q∨,α2=2

−1

(α · σ)2((α · σ)2 − 1)2
∏

β·α=1

(β · σ)2

+
n∑

k=1

Z1(σ + ek)(σk +
1
2
)2 + Z1(σ − ek)(σk − 1

2
)2∏

β·ek=±1

(β · σ)

and so on. These are easily compared to the instanton counting from the introduc-
tion 1.3.2, and the appendix of [193] where the results were first presented.

2.2.4.3 D2 = A1 × A1

An interesting thing about (2.17) is that it generalizes to lower n. Explicitly, under
the isomorphism

σ
[D2]
1 = (σ1 + σ2)

[A1×A1] (2.18)
σ
[D2]
2 = (σ1 − σ2)

[A1×A1]

we find
Z1(σ)

[D2] = Z1(σ1)
[A1] + Z1(σ2)

[A1]

Z2(σ)
[D2] = Z2(σ1)

[A1] + 2Z1(σ1)
[A1]Z1(σ2)

[A1] + Z2(σ2)
[A1]

That this continues can be confirmed by the recursion relations or instanton count-
ing. Together with (2.18) which splits QD2

∼= QA1 ×QA1 this suggests

τ
[D2]
0 = (τ

[A1]
0 )2, τ

[D2]
1 = (τ

[A1]
1 )2

Since D2(τ
[A1]
0 ) = −t1/2(τ [A1]

1 )2 and D2(τ
[A1]
1 ) = −t1/2(τ [A1]

0 )2,

D2((τ
[A1]
0 )2) = 2(τ

[A1]
0 )2D2((τ

[A1]
0 )2) = 2t−1/2D2((τ

[A1]
1 )2)t1/2τ

[A1]
1 = D2((τ

[A1]
1 )2)

So (2.16) is valid in this case as well. From the isomonodromic viewpoint, a linear
quiver such as A1 ×A1 corresponds to the degeneration of the sphere with 5 points
where we have two complex deformations, the Garnier system. Up to now, we
have not considered masses. However, due to this identification, we expect an
identification between Dn with one fundamental flavor and the SU(2) × SU(2)
quiver with one bifundamental. Indeed, we find∑

i≥0

Z
[D2]
i (b1 − b2, b1 + b2,m)ti = e4t

∑
i≥0

Z
[A1×A1]
i (b1, b2,m)(−1)iti

This agrees with [138].

86 Fran Globlek



Generalized Painlevé equations

2.2.4.4 D3 = A3

Paralleling the previous discussion, there is a linear isomorphism of D3 and A3.
Their extended root systems are the same, and from (2.3) for D3 we can obtain
(2.16), (2.17) since

D2(τ0) = −t1/4τ2τ3 = D2(τ1)

so the equations are likewise the same.

2.2.4.5 Cn

τ0 τ1 τ2 τn−2 τn−1 τn

Here there is a potential issue of normalizing the roots, so we must make note
of our conventions. In writing (2.6) we have stressed that the bilinear form is
fixed by demanding |α|2 = 2 for all long roots α. If we decide to choose roots of
Cn as {Dn roots} ∪ {±2ei}, clearly |2ei|2 = 4. So we should normalize them as
{± 1√

2
ei± 1√

2
ej}∪ {±

√
2ei}. The dual lattice is then Q∨ =

√
2Zn. In literature, the

factors of
√
2 are sometimes avoided, which can be accommodated in this approach

by rescaling time and working with

τi =
∑

m∈Zn+λ∨
i

em·ηt
1
2

∑n
i=1(σi+mi)

2

B(σ +m|
√
t) (2.19)

The minuscule weights are λ0 = 0 and λn = (( 1√
2
)n). Bilinear relations are only

available for n = 1, 2, where accidental isomorphisms map the algebras to those
already considered. We explore the lower ranks explicitly up to and including C4.

As for the analysis of the higher order algebras, these produce more complicated
recurrence relations to be solved by a case by case analysis, unlike in the A,B,D
types which allow for a unified treatment. We performed explicit checks for C5 and
C6 up to one-instanton, again in agreement with [193].

2.2.4.6 C1

This is the simplest case, in fact isomorphic to A1. The coroot lattice is Q∨ =
√
2Z,

λ1 = 1/
√
2, and the equations are formally the same as A1,

D2(τ0) = −t
1
2 τ 21 , D2(τ1) = −t

1
2 τ 20

2.2.4.7 C2

For the subsequent rank, the lattice is Q∨ =
√
2Z2, λ = [( 1√

2
)2]. The full system

D2(τ0) = −t
1
3 τ1, D2(τ1) = −2t

1
3 τ 20 τ

2
2 , D2(τ2) = −t

1
3 τ1

leads to the single equation
D2(τ0) = D2(τ1)
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As with the rank 1 case, there is an accidental isomorphism at this level, namely,
C2

∼= B2, i.e. sp2
∼= so5, leading to the same equation. The isomorphism is realised

by

2σ
[C2]
1 = (σ1 + σ2)

[B2] 2σ
[C2]
2 = (σ1 − σ2)

[B2] .

As such, we find a recurrence relation for the equivariant volumes of the instanton
moduli space which resembles the other recurrence relations we have already found,
but it does not generalize to higher rank and pertains only to C2.

One easily finds that

B0(σ) =
1

G(1±
√
2σ1)G(1±

√
2σ1)G(1± 1√

2
(σ1 ± σ2))

as well as the simple recurrence relation which we can write as

2(
k

2
)2Zk(σ) =

∑
1
2
m+λ·m+j1+j2=

k−1
2

(j1 − j2 + 2(λ+m) · σ)2

Z2j1(σ + λ+m)Z2j2(σ − λ−m)
B0(σ ± (λ+m))

B0(σ)2

−
∑

n2+i1+i2=
k
2

i1,2<k/2

(i1 − i2 + 2n · σ)2 Z2i1(σ + n)Z2i2(σ − n)
B0(σ ± n)

B0(σ)2

2.2.4.8 C3

In higher ranks one gets higher order relations among the τ -functons. In particular,
while for Cn with n even the central node is seen to be invariant, n being odd
presents an interesting challenge. In the following, Q∨ =

√
2Z3, and λ3 = (( 1√

2
)3),

and the τ -system is

D2(τ0) = −t
1
4 τ1

D2(τ1) = −2t
1
4 τ 20 τ2

D2(τ2) = −2t
1
4 τ1τ

2
3

D2(τ3) = −t
1
4 τ2 (2.20)

By multiplying (2.20) by τ 20 , we obtain

τ 20D
2(τ3) = −t

1
4 τ 20 τ2 =

1

2
D2(τ1) =

1

2
t−

1
2D4(τ0)

Dividing by τ0 and using the Y operators defined in 2.2.3 we rewrite this as the
cubic system

Y 3(τ0) = 2t1/2τ0D
2(τ3)
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Inserting (2.19) we obtain

∑
n1,2,3∈

√
2Z3

i1,2,3∈N0

3∏
k=1

e2πiη·nkt
1
2
(σ+nk)

2+ikB0(σ + nk)Zik(σ + nk)

1

3!

∏
k1<k2

(
1

2
n2
k1
+ ik1 −

1

2
n2
k2
− ik2 + (nk1 − nk2) · σ

)2

= 2t1/2
∑

m1∈
√
2Z3

m2,3∈
√
2Z3+λ3

j1,2,3∈N0

3∏
k=1

e2πiη·nkt
1
2
(σ+nk)

2+ikB0(σ + nk)Zik(σ + nk)

(
1

2
m2

2 + j2 −
1

2
m2

3 − j3 + (m2 −m3) · (σ + λ3)

)2

Then, seeing that 2 × 1
2
λ2

3 = 3
2

and rewriting m1 = m
(0)
1 m2,3 = m

(0)
2,3 + λ3 where

m
(0)
1,2,3 ∈

√
2Z3, we reduce to the constraints

3∑
k=1

1

2
n2
i + ik = 2 + λ3 · (m(0)

2 +m
(0)
3 ) +

3∑
k=1

1

2
(m

(0)
k )2 + jk (2.21)

3∑
k=1

ni = 2λ3 +
3∑

k=1

m
(0)
i (2.22)

Let p1, p2, p3 be a permutation of {1, 2, 3}. We consider factors of t
√
2σ·(ep1+ep2 )+2, in

other words (2.21)=2 and (2.22)=
√
2(ep1 + ep2). For the LHS we find the solutions

n1 =
√
2(ep1 + ep2), n2 = n3 = 0 and permutations thereof, for which the LHS

vanishes due to degeneracy, and n1 =
√
2ep1 , n2 =

√
2ep1 , n3 = 0. For the RHS,

there are two solutions m
(0)
1 = m

(0)
2 = 0, m(0)

3 = −
√
2ep3 , and m

(0)
1 = m

(0)
3 = 0,

m
(0)
2 = −

√
2ep3 . We are led then to the equation

(1 +
√
2σp1)

2(1 +
√
2σp2)

2(σp1 − σp2)
2B0(σ +

√
2ep1)B0(σ +

√
2ep2)

= 4σ2
p3
B0(σ + λ3)B0(σ + λ3 −

√
2ep3)

Using (2.9) we find on the LHS

(σp1 − σp2)
2 2

σ2
p1
(σ2

p1
− σ2

p2
)(σ2

p1
− σ2

p3
)

2

σ2
p2
(σ2

p1
− σ2

p2
)(σ2

p2
− σ2

p3
)

and on the RHS

4σ2
p3

1

σp1σp2σp3(σp1 + σp2)(σp1 + σp3)(σp2 + σp3)

1

σp1σp2(−σp3)(σp1 + σp2)(σp1 − σp3)(σp2 − σp3)

as there are no roots β∨ such that β∨ · λ3 = 2. Due to this an equality, we get

B0(σ) =
3∏

i=1

1

G(1±
√
2σi)

3∏
i<j=1

1

G(1± 1√
2
(σi ± σi))
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Keeping (2.21)=2, but letting (2.22)=
√
2ep1 , we find one nonvanishing solution

for the LHS, n1 =
√
2ep1 , n2 = n3 = 0, and i2 = 1 or i3 = 1, with the rest zero.

This leads to the term

− 4

(σp1 ± σp2)(σp1 ± σp3)
Z1(σ)

On the RHS we can describe the four solutions as the two couples m1 = 0, m2 =
1/
√
2ep1 ± 1/

√
2(ep2 + ep3) and m3 = 1/

√
2ep1 ∓ 1/

√
2(ep2 + ep3) and m1 = 0,

m2 = 1/
√
2ep1 + 1/

√
2(±ep2 ∓ ep3) and m3 = 1/

√
2ep1 + 1/

√
2(∓ep2 +±ep3). This

gives the RHS
− 16

σ2
1σ

2
2σ

2
3(σp1 ± σp2)(σp1 ± σp3)

so that Z1(σ) =
4

σ2
1σ

2
2σ

2
3
, which is indeed the 1 Sp(6) instanton equivariant volume,

with the v.e.v.’s rescaled by
√
2 factors.

Continuing to two instantons, we have to collect t
√
2σ·ep1+3 terms, as we find

that t
√
2σ·(ep1+ep2 )+3 ones don’t involve Z2 and lead to an identity involving shifts of

Z1 and rational functions. The structure of solutions is more involved. By picking
(p1, p2, p3) = (1, 2, 3) for readability, we find the relation

(√
2σ1 − 1

)
2σ2

2σ
2
3Z2(σ) =

=
∑

(w1,w2)∈{(−1,−1),(−1,1),(1,−1)}

2 (σ1 + σ2w1 + σ3w2)
2

σ2
1

(√
2σ1 + 1

)
2 (σ1 + σ2w1) 2 (σ1 + σ3w2) 2 (σ2w1 + σ3w2) 2

+ 2Z1 (σ)

+
∑

(w1,w2)∈{(−1,−1),(−1,1),(1,−1),(1,1)}

(√
2σ2w1 +

√
2σ3w2 + 1

)
2Z1

(
σ1 +

1√
2
, σ2 +

w1√
2
, σ3 +

w2√
2

)
2 (σ2w1 + σ3w2) 2

+
∑
w=±1

2σ2
2

σ2
3 (σ

2
2 − σ2

3)
2
(
1−

√
2σ3w

)
2 (σ3w + σ1) 2

+
2σ2

3

σ2
2 (σ

2
2 − σ2

3)
2
(
1−

√
2σ2w

)
2 (σ2w + σ1) 2

+
∑
w=±1

−
2σ2

3

(√
2σ1 +

√
2σ2w + 1

)
2(√

2σ1 + 1
)
2σ2

2 (σ
2
2 − σ2

3)
2 (σ1 − σ2w) 2

(√
2σ2w + 1

)
2
−

2σ2
2

(√
2σ1 +

√
2σ3w + 1

)
2(√

2σ1 + 1
)
2σ2

2 (σ
2
2 − σ2

3)
2 (σ1 − σ3w) 2

(√
2σ3w + 1

)
2

− 32σ2
2(√

2σ1 + 1
)
2 (1− 2σ2

3)
2 (σ2

2 − σ2
3)

2
− 32σ2

3(√
2σ1 + 1

)
2 (1− 2σ2

2)
2 (σ2

2 − σ2
3)

2
− 1

4

(√
2σ1 + 2

)
2σ2

2σ
2
3Z1 (σ)Z1

(
σ1 +

√
2, σ2, σ3

)

which gives the correct 2-instanton equivariant volume compared to instanton count-
ing, although in a vastly different presentation.

2.2.4.9 C4

In this case n is even, so under shifts, the middle node gets mapped to itself, up
to some power of t as required by asymptotics. The relevant lattice is Q∨ =

√
2Z4,

the shift λ4 = (( 1√
2
)4), and the full system is

D2(τ0) = −t
1
5 τ1, D2(τ1) = −2t

1
5 τ 20 τ2, D2(τ2) = −2t

1
5 τ1τ3

D2(τ3) = −2t
1
5 τ2τ

2
4 , D2(τ4) = −t

1
5 τ3

We can eliminate the middle node tau function τ2 from the following

D4(τ0) = −2t−
1
5 τ 20 τ2, D4(τ4) = −2t−

1
5 τ2τ

2
4

to write
τ4Y

3(τ0) = τ0Y
3(τ4) .
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We can repeat the calculation in the previous section, this time in short. Inserting
(2.19) we obtain∑

n1∈
√
2Z4+λ4

n2,3,4∈
√
2Z3

i1,2,3,4∈N0

4∏
k=1

e2πiη·nkt
1
2
(σ+nk)

2+ikB0(σ + nk)Zik(σ + nk)

4∏
k1<k2=2

(
1

2
n2
k1
+ ik1 −

1

2
n2
k2
− ik2 + (nk1 − nk2) · σ

)2

=
∑

m1∈
√
2Z4

m2,3,4∈
√
2Z4+λ4

j1,2,3,4∈N0

4∏
k=1

e2πiη·nkt
1
2
(σ+nk)

2+ikB0(σ + nk)Zik(σ + nk)

4∏
k1<k2=2

(
1

2
m2

k1
+ jk1 −

1

2
m2

k2
− jk2 + (mk1 −mk2) · σ

)2

Then, as 2 × 1
2
λ2

4 = 2, we decompose the vectors in terms of the coroot lattice as
n1 = n

(0)
1 + λ4, n2,3,4 = n

(0)
2,3,4, m1 = m

(0)
1 m2,3,4 = m

(0)
2,3 + λ4 which implies the

constraints

λ4 · n(0)
1 +

4∑
k=1

1

2
(n

(0)
i )2 + ik = 2 + λ4 · (m(0)

2 +m
(0)
3 +m

(0)
4 ) +

4∑
k=1

1

2
(m

(0)
k )2 + jk(2.23)

4∑
k=1

n
(0)
i = 2λ4 +

4∑
k=1

m
(0)
i (2.24)

Let p1, p2, p3, p4 be a permutation of {1, 2, 3, 4}. To obtain the functional equations
for the one-loop term we consider factors of t

√
2σ·(ep1+ep2 )+2, (2.23)=2 and (2.24)=√

2(ep1 + ep2). For the LHS the only nonvanishing solutions are n
(0)
1 = 0 and n2,3,4

permutations of {
√
2ep1 ,

√
2ep2 , 0}, while on the RHS the only nonvanishing ones

are m
(0)
1 = 0 and m

(0)
2,3,4 permutations of {−

√
2ep3 ,−

√
2ep4 , 0}. Some factors cancel,

leading to

2(1 +
√
2σp1)

2(1 +
√
2σp2)

2(σp1 − σp2)
2B0(σ +

√
2ep1)B0(σ +

√
2ep2)

= 4σ2
p3
(σp3 − σp4)

2σ2
p4
B0(σ + λ3 −

√
2ep3)B0(σ + λ3 −

√
2ep4)

We checked that (2.8) satisfies this relation also in this case. To find the one-
instanton term, we need to collect factors of t

√
2σ·ep1+2. The solutions on the LHS

are either with all i’s vanishing, that is with n
(0)
1 = −n

(0)
k = −

√
2ep for any k, p ∈

{2, 3, 4} and the remaining two vectors equal to
√
2ep1 and zero respectively, or

with one out of i2,3,4 being 1 with a single vector – of index different from both
1 and from the index of the is – being equal to

√
2ep. On the RHS, j’s vanish,

m
(0)
1 = 0 and the rest are a permutation of {

√
2ep̃2 ,

√
2ep̃3 +

√
2ep̃4 , 0} with p̃2,3,4 a

permutation of {p2, p3, p4}. After some cancellation of rational functions, we find
the correct one-instanton term Z1(σ) = −8/σ2

1σ
2
2σ

2
3σ

2
4.

One continues similarly up to higher order. We have checked agreement with
instanton counting until four instantons.
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2.2.4.10 E6

Even though the equations presented up to this point were novel, the instanton
volumes were able to be obtained by means of instanton counting as in the intro-
duction 1.3.2. We now turn to non-classical Lie algebras and describe novel ways
of obtaining instanton volumes where instanton counting is unavailable. We note
that yet another way to obtain them is via blowup relations, likewise conjectural
at time of writing, and these serve as a cross-check. They are also described in the
introduction 1.3.2. Computationally, however, the equations we find are quicker,
because they only involve instanton volumes at the same Ω-background. We begin
with the simplest simply laced exceptional Lie algebra, E6.

τ0

τ1 τ2 τ3

τ4

τ5 τ6

Due to the similarities of the root systems of the E-type algebras, we will give a
brief overview of E8 at this point and describe the others as its reductions. The
root system is the union of D8 roots {ei ± ej}i 6=j and (x1, ..., x8) ∈ R8 of length
2 such that all xi ∈ Z + 1

2
and

∑
i xi is even. The coroot lattice can be obtained

from two cosets of the D8 one as Q[E8] = Q[D8] ∪
(
Q[E8] + ((1

2
)n−1,−1

2
)
)
. E6 is then

obtained by projecting all of the roots to have the last three coordinates equal,
(x1, ..., x5, x6, x6, x6). Clearly, this forces the D8-type roots to an embedding of D5,
with the last three coordinates zero. Unlike E8, which is unimodular and has no mi-
nuscule coweights, E6 has three: λ0 = 0, λ1 = (1, 04, (−1

3
)3), and λ6 = (05, (−2

3
)3).

The Dynkin diagram exhibits an outer Z3 symmetry. For this exceptional algebra
we obtain the τ -system

τ4 = −t−
1
12D2(τ0), τ2 = −t−

1
12D2(τ1), τ5 = −t−

1
12D2(τ6) (2.25)

D2(τ3) = −t
1
12 τ2τ4τ5

−t
1
12 τ3 = τ−1

0 D2(τ4) = τ−1
1 D2(τ2) = τ−1

6 D2(τ5) (2.26)

Focusing on the legs with τ0 and τ6, inserting (2.25) in the last equation (2.26) and
using the operators defined in (2.10) gives us

Y 3(τ0) = Y 3(τ6) (2.27)
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The Kiev Ansatz we insert likewise has σ,η ∈ C8, but with the last three compo-
nents restricted to be same. The equation to be solved becomes

∑
n1,2,3∈Q
i1,2,3∈N

3∏
k=1

e2πiη·nkt
1
2
(σ+nk)

2+ikB0(σ + nk)Zik(σ + nk)

∏
k1<k2

(
1

2
n2
k1
+ ik1 −

1

2
n2
k2
− ik2 + (nk1 − nk2) · σ

)2

=
∑

m1,2,3∈Q
j1,2,3∈N

t2 ·
3∏

k=1

e2πiη·mkt
1
2
(σ+mk)

2+λ6·(σ+mk)+ikB0(σ +mk + λ6)Zjk(σ +mk + λ6)

∏
k1<k2

(
1

2
m2

k1
+ jk1 −

1

2
m2

k2
− jk2 + (mk1 −mk2) · (σ + λ6)

)2

To get the lowest order equations which specify B0, let p1, ...p5 be a permutation of
{1, ..., 5} and let δ := ((1

2
)8). Then looking at the coefficients of t2+σ·(2ep1+ep2+ep3 )

gives the equation

(1 + σp1 + σp2)
2 (1 + σp1 + σp3)

2 (σp2 − σp3)
2B0(σ)B0(σ + ep1 + ep2)B0(σ + ep1 + ep3) =

((δ − ep2 − ep3) · σ)
2 ((δ − ep2 − ep3 − ep4 − ep5) · σ)

2 (σp4 + σp5)
2 ×

B0(σ + δ + λ)B0(σ + δ + λ− ep4 − ep5)B0(σ + ep1 − λ/2)

The solution satisfying the asymptotic behaviour (2.7) is

B
[E6]
0 =

5∏
i<j=1

1

G(1± σi ± σj)

∏
εi=±1∏8
i=1 εi=1,

ε6=ε7=ε8

1

G(1 + 1
2

8∑
i=1

εiσi)

We also solved the recurrence relation arising from (2.27) up to three instantons. For
one instanton, our results agree with the ones of [170], and for two instantons they
agree with the blowup formula. Three instantons proved to be too computationally
intensive to check using the blowup formula, however it obeys the expected large-σ
limit described in appendix B. The one instanton contribution follows most easily
by looking at the coefficients of t2+ep1+ep2 , where we obtain

3!(σp1 + σp3)
2(1 + σp1 + σp2)

2B0(σ)
2B0(σ + ep1 + ep2)Z1(σ)

=
∑

n1+n2+n3+3λ
=ep1+ep2

1
2
n2
k+λ·nk=0

3∏
i<j

(σ · (ni − nj))
2

3∏
i=1

B0(σ + ni)

−
∑

n1+n2
=ep1+ep2
n2
1=n2

2=2

B0(σ)(σ · (n1 − n2))
2(σ · n1)

2(σ · n2)
2B0(σ + n1)B0(σ + n2)

The higher instanton expressions are too cumbersome and unenlighting to display
here3.

3These can be provided privatly to any interested reader.
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2.2.4.11 E7

τ0 τ1τ2τ3τ4

τ5

τ6τ7

The roots of E7 are obtained by projecting the E8 ones to have the last two coor-
dinates equal, (x1, ..., x5, x6, x7, x7). E7 has two minuscule coweights λ0 = 0 and
λ1 = (1, 05, (−1

2
)2). The Dynkin diagram exhibits an outer Z2 symmetry. For this

exceptional algebra we obtain the τ -system

τ7 = −t−
1
18D2(τ0), τ2 = −t−

1
18D2(τ1)

τ6 = −t−
1
6 τ−1

0 D4(τ0), τ3 = −t−
1
6 τ−1

1 D4(τ1)

τ−1
2 D2(τ3) = −t−

1
18 τ4 = τ−1

7 D2(τ6) (2.28)

When we rewrite (2.28) in terms of the single equation, the powers of t 1
18 drop out

to give
1

D2(τ0)
D2(

D4(τ0)

τ0
) =

1

D2(τ1)
D2(

D4(τ1)

τ1
)

Here we recognize an operator defined in (2.10), which enables us to write

Y 4(f) =
1

D2(f)
D2(

D4(f)

f
) ⇒ Y 4(τ0) = Y 4(τ1),

The Kiev Ansatz we insert likewise has σ,η ∈ C8, but with the last two components
restricted to be same. The equation to be solved becomes

∑
n1,2,3,4∈Q
i1,2,3,4∈N

4∏
k=1

e2πiη·nkt
1
2
(σ+nk)

2+ikB0(σ + nk)Zik(σ + nk)

∏
k1<k2

(
1

2
n2
k1
+ ik1 −

1

2
n2
k2
− ik2 + (nk1 − nk2) · σ

)2

=
∑

m1,2,3,4∈Q
j1,2,3,4∈N

t3 ·
4∏

k=1

e2πiη·mkt
1
2
(σ+mk)

2+λ1·(σ+mk)+ikB0(σ +mk + λ1)Zjk(σ +mk + λ1)

∏
k1<k2

(
1

2
m2

k1
+ jk1 −

1

2
m2

k2
− jk2 + (mk1 −mk2) · (σ + λ1)

)2

With regards to the linear and quadratic constraints obtained from comparing ex-
ponents of t, {tσi}i, this is similar to C4. In, λ2

1 =
3
2
, so in the analogue of (2.23) we

end up with 4
2
λ2

1 = 3 in pure powers of t. Likewise, we have even powers of τ1, and
2λ1 ∈ Q. Both of these lead to well defined analogues of (2.23) and (2.24). The
lowest possible order in t is t3. If we pick p1, ..., p6 to be a permutation of {1, ..., 6},
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looking at powers of t3+σ·(2ep1+2ep2+2ep3 ) we get

B0(σ)
3∏

i<j

(1 + σpi + σpj)
2(σpi − σpj)

2B0(σ + epi + epj)

= B0(σ + δ − e1 − ep4 − ep5 − ep6)
3∏

i<j

(−δi,1 + σpi ± σpj)
2

3∏
i=1

B0(σ + δ − e1 − epi+3
)

with δ := ((1
2
)8) as above. Clearly, the only lattice points satisfying the quadratic

constraint while summing up to 2(ep1 + ep2 + ep3) are ep1 + ep2 , ep1 + ep3 , ep2 + ep3
and zero, while the ones on the shifted lattice, which can be inferred from the
above equation, are similarly unique up to permutation. The solution satisfying the
asymptotic behaviour (2.7) is

B
[E7]
0 =

6∏
i<j=1

1

G(1± σi ± σj)

∏
εi=±1∏8
i=1 εi=1,
ε7=ε8

1

G(1 + 1
2

8∑
i=1

εiσi)

The one instanton contribution follows most easily by looking at the coefficients of
t3+2σp1+σp2+σp3 , where we obtain

4!(σp2 − σp3)
2(1 + σp1 + σp2)

2(σp1 + σp2)
2(1 + σp1 + σp3)

2(σp1 + σp3)
2

B0(σ)
2B0(σ + ep1 + ep2)B0(σ + ep1 + ep3)Z1(σ)

=
∑

n1+n2+n3+n4+4λ
=2ep1+ep2+ep3

1
2
n2
k+λ·nk=0

4∏
i<j

(σ · (ni − nj))
2

4∏
i=1

B0(σ + ni)

−
∑

n1+n2+n3
=2ep1+ep2+ep3
n2
1=n2

2=n2
3=2

B0(σ)
3∏

i<j

(σ · (ni − nj))
2

3∏
i=1

(σ · ni)
2B0(σ + ni)

This can be compared with the general one instanton term, most easily when we
specialize all variables except one; for example, leaving intact σ7 yields a ratio of
a degree 50 and a degree 66 polynomial in C[σ7]. Comparing other powers, i.e.
t3+ep1+ep2 and t3 yields different expressions for Z1(σ). To obtain the two instanton
term, we can look at t4+2ep1+ep2+ep3 . Similarly to the previous case, we obtain a ratio
of a degree 166 to one of 198 in C[σ7]. The large-σ limit conforms to the expected
limit from appendix B.
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2.2.4.12 E8

τ0τ1τ2τ3τ4τ5

τ6

τ7τ8

For the exceptional algebra E8 we obtain the system

Y 6(τ0) = Y 3(τ8) (2.29)
τ6D

2(τ8) = Y 7(τ0) (2.30)
D2(τ6) = Y 6(τ0) (2.31)

Here, τ8 needs to be determined from (2.29), and then fed into (2.31), once τ6 has
been eliminated using (2.30). As the algebra with the largest root system, it was
not practical to explicit calculations for the above E8 system.

2.2.4.13 G2

τ0 τ1 τ2

G2 is a non-simply laced exceptional algebra. As can be seen from the (dual)
extended Dynkin diagram, eliminating the node corresponding to τ2 leaves us with
a copy of A2, which is a subalgebra which we previously embedded into a hyperplane
orthogonal to (1, 1, 1) in R3. We will use the same embedding for G2, with σ1+σ2+
σ3 = 0. Besides the 6 roots of A2, G2 has 6 other roots of the form ep1 + ep2 − 2ep3
for p1,2,3 permutations of {1, 2, 3}. In the normalization where G2’s longest roots
have length 2, the coroot lattice is the span Q∨ = Z 1√

3
(−2, 1, 1) ⊕ Z

√
3(1,−1, 0) -

we are not aware of a simpler definition. The τ -system is

D2(τ0) = −t
1
6 τ1 (2.32)

D2(τ1) = −t
1
6 τ0τ2 (2.33)

D2(τ2) = −3t
1
6 τ1 (2.34)

By using (2.32) to eliminate τ1 from (2.33) and then using (2.33) to eliminate τ2
from (2.34), the τ -system reduces to the single equation

D2(τ−1
0 D4(τ0)) = 3t(D2(τ0))

3

which can be simplified to

Y 4(τ0) = 3t(D2(τ0))
2

since the Kiev Ansatz (2.6) implies D2(τ0) 6= 0. We insert

τ0(σ,η|t) =
∑
n∈Q∨

e2πiη·n
(
−t
3

) 1
2
(σ+n)2

B0

(
σ + n|−t

3

)
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and after a rescaling t 7→ −3t we obtain the equation∑
n1,2,3,4∈Q∨

i1,2,3,4∈N0

4∏
k=1

e2πiη·nkt
1
2
(σ+nk)

2+ikB0(σ + nk)Zik(σ + nk)

(
1

4!

∏
k1<k2

(
1

2
n2
k1
+ ik1 −

1

2
n2
k2
− ik2 + (nk1 − nk2) · σ)2

−9

4
t(
1

2
n2
1 + i1 −

1

2
n2
2 − i2 + (n1 − n2) · σ)2

(
1

2
n2
3 + i3 −

1

2
n2
4 − i4 + (n3 − n4) · σ)2

)
= 0 .

The coefficients of t3+σ·( 4√
3
,− 2√

3
,− 2√

3
) are the lowest order powers which give the

functional equation for B0(σ). Instead of a quartic relation we find that it simplifies
to the following quadratic one(
2σ1 − σ2 − σ3√

3
+ 1

)2

B0(σ)B0

(
σ +

1√
3
(2,−1,−1)

)
=

(
σ2 − σ3√

3

)2(
σ1 + σ2 − 2σ3√

3

)2

×
(
σ1 − 2σ2 + σ3√

3

)2(
σ1 + σ2 − 2σ3√

3
+ 1

)2(
σ1 − 2σ2 + σ3√

3
+ 1

)2

×B0

(
σ +

1√
3
(1,−2, 1)

)
B0

(
σ +

1√
3
(1, 1,−2)

)
By imposing (2.7), these are solved by B[G2]

0 (σ) =

3∏
i<j

1

G(1± 1√
3
(σi − σj))

3∏
ijk

cyclic

1

G(1± 1√
3
(2σi − σj − σk))

However, such a simplification doesn’t apply to the higher orders or different powers
of t, {tσi}. The 1-instanton contribution is obtained by considering the coefficient
of the next order t3+σ·(

√
3,0,−

√
3) term: curiously, all B0(σ) factors drop out and we

obtain just

Z1(σ)
[G2] = − 486

(σ1 + σ2 − 2σ3)2(σ1 − 2σ2 + σ3)2(−2σ1 + σ2 + σ3)2
σ3=−σ1−σ2= − 3

2σ2
1σ

2
2(σ1 + σ2)2

This expression is in agreement with (4.39) in [170] when Q = 0 and their a1 =
(σ1 − σ2)/

√
6, a2 = (σ1 + σ2)/

√
3 as well as with the blowup-formula from 1.3.4.

The next order in t, t4+σ·(
√
3,0,−

√
3), gives the 2-instanton term Z2(σ)

[G2]|σ3=−σ1−σ2 =

3
(
9σ4

1 (6σ
2
2 + 1) + 18σ3

1 (6σ
3
2 + σ2) + 3σ2

1 (18σ
4
2 + 9σ2

2 − 2) + 6σ1σ2 (3σ
2
2 − 1) + (1− 3σ2

2)
2
)

σ2
1 (1− 3σ2

1)
2
σ2
2 (1− 3σ2

2)
2
(σ1 + σ2)2 (1− 3(σ1 + σ2)2)

2

which agrees with the expression obtained from the blowup formula of the introduc-
tion 1.3.4. Z3(σ) can be obtained by looking at t5+σ·(4,5,−1)/

√
3, although it is much

to cumbersome to display. At this point, comparison with the blowup formula again
becomes impossible, and we have to be content with checking that the large-σ limit
of appendix B is correct.
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2.2.4.14 F4

τ0 τ1 τ2 τ3 τ4

F4 is another non-simply laced unimodular exceptional algebra. As such, we have
to express the system of equations in terms of the single tau function τ0 associated
to the extended node. From the system

D2(τ0) = −t1/9τ1, D2(τ1) = −t1/9τ0τ2, D2(τ2) = −t1/9τ1τ3
D2(τ3) = −t1/9τ 22 τ4, D2(τ4) = −t1/9τ3

we obtain the single equation

D2(
Y 5(τ0)

Y 3(τ0)
) = −8t2Y 4(τ0)

Like for E8, we leave it as it is, being beyond our computational power.

2.2.5 Twisted affine Lie algebras: radial Bullough-Dodd and
BC1

τ0 τ1

We consider the twisted affine Lie algebra, called either A(2)
2n or BCn, with roots of

three different lengths inherited from a folding of affine D2n+2; the roots are ±ek,
±ej ± ek as well as ±2ek of lengths 1, 2, 4 respectively4. The simplest case n = 1 is
slightly exceptional in this regard. Indeed, it comes from a quotient of affine D4 by
its order 4 automorphism and possessing no middle roots. It gives us

D2(τ0) = −1

2
t1/3τ1

D2(τ1) = −2t1/3τ 40

We redefine t 7→ 32−4t2 from which we obtain the single equation

Y 3(τ0) = −6t2τ 30 (2.35)

suitable for inserting an Ansatz analogous to the one used for the A1 case,

τ0(σ, η|t) =
∑

n∈Z,i∈N0

e2πiηnt(σ+n)2+iB0(σ + n)Zi(σ + n), (2.36)

yielding from (2.35) the equation∑
n1,2,3∈Z
i1,2,3∈N

3∏
k=1

e2πiηnkt(σ+nk)
2+ikB0(σ + nk)Zik(σ + nk)

( ∏
k1<k2

(n2
k1
+ ik1 − n2

k2
− ik2 + 2(nk1 − nk2)σ)

2 + 6t2

)
= 0 .

4Note that the BC nomenclature refers to both sets of roots ±ek and ±2ek, which are peculiar
to algebras of Bn and Cn respectively, being present along with the usual roots of Dn algebras.
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The lowest order terms are the ones proportional to t2. For terms proportional to
the 6t2, the solution has no shifts or instanton numbers, while for rest of the the
only nonvanishing possibilities are n1 = 1, n2 = −1, n3 = 0 and permutations. After
a cancellation of a B0(σ) factor, this leads to

4σ2
(
1− 4σ2

)2
B0(σ ± 1) = B0(σ)

2 (2.37)

At this point we have to discuss what kind of asymptotics would be suitable. No-
tice that we have the roots ±2. If we identify these with the ones of the usual
SU(2) adjoint representation, then the roots ±1 correspond to the fundamental
representation. Both representations are obtained from the folding of a pure D4

Super Yang-Mills theory. As the parent theory has no mass parameters, it is natu-
ral to consider asymptotic conditions corresponding to an SU(2) with one massless
fundamental flavor, i.e.

log(B0) ∼
1

4
(σ)2 log (σ)2 − 1

4
(2σ)2 log (2σ)2

We find that the solution to equation (2.37) with the appropriate asymptotics is

B0(σ) =
G(1± σ)

G(1± 2σ)
(2.38)

Further, by looking at t2k+2σ terms in (2.2.5), we find that there is a unique
term proportional to

(2k − 1)2(1− 2k + 2σ)2(1 + 2σ)2B0(σ + 1)B0(σ)Z2k−1(σ)

which comes from a factor from the Kiev Ansatz with t1+2σ, one with no shifts,
and another with only an instanton contribution t2k−1. All the other terms are
necessarily combinations of terms proportional to Z2k′−1 with k′ < k. To get t2k+2σ

have to solve

n1 + n2 + n3 = 1

n2
1 + n2

2 + n2
3 + i1 + i2 + i3 + (2) = 2k

The first equation, however, implies n2
1+n

2
2+n

2
3 is odd, and so one of the i’s always

has to be odd and accordingly Z2k−1 = 0. Indeed, for k = 1 there is only one such
term possible and we find that it has to vanish due to (2.2.5), so by induction we
can conclude that

Zodd(σ) = 0.

For the rest we find

Z2(σ) = − 3

22 (1− 4σ2)2

Z4(σ) =
9 (4σ2 + 1)

27σ2 (1− 4σ2)2 (9− 4σ2)2

Z6(σ) = − 576σ6 − 2160σ4 + 5324σ2 + 75

29σ2 (1− 4σ2)4 (9− 4σ2) (25− 4σ2)

Z8(σ) =
3 (4608σ10 − 78336σ8 + 482560σ6 − 615824σ4 + 243742σ2 + 62475)

216σ2 (1− σ2)2 (1− 4σ2)4 (9− 4σ2)2 (25− 4σ2)2 (49− 4σ2)2
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We can recognize here exactly the SU(2) Nekrasov functions with one massless flavor
in the fundamental representation. Note that, starting from PIII2 in the form

q̈ =
q̇2

q(t)
− q̇

t
− (1− 2θ)q̇2

t
+ q3 − 2

t2

and setting q = t−2/3 exp{w}, θ = 1/2 gives us

∂2log tw = t2/3(e2w − 2e−w)

Setting w = a+ 2(σ − 1/6) log t+X(t), since ρ/h∨ = 1/6, gives us

∂2log tX = e2at4σe2X − 2eat1−2σe−X

This cannot be obtained by directly applying (2.1) to this affine root system. Instead
we must start from D4 and require a solution of the form φ1 = φ4 = 0, φ3 = −φ2

Let us comment on other interesting directions to investigate further and look at
the equation for the surviving degree of freedom. This is exactly the folding which
gives the diagram BC1 depicted at the beginning of this subsection. Solving the
equation we find

X(σ, a|t) = 2 log τ0(σ, ã|it)− log τ1(σ, a|t)

where ∂2log t log τ1(σ, a|t) = e2at4σe2X , normalized such that τ1(σ, a|0) = 1, τ0 is (2.36)
with perturbative term (2.38), first four instanton terms we found and the initial
condition

ã = a− log

(
Γ(1− 2σ)2Γ(σ)

Γ(2σ)2Γ(1− σ)

)
− iπσ +

iπ

2

Note that this is different from the tau function defined in (2.25), (2.29) of [101].

τ0 τ1 τ2

The slightly more general case of n = 2 gives us the system

D2(τ0) = −1

2
t1/5τ1

D2(τ1) = −t1/5τ 20 τ2
D2(τ2) = −2t1/5τ 21

from which we obtain the single equation

τ 20Y
4(τ0)− (Y 3(τ0))

2 = −1

2
tτ 40D

2(τ0)

The lattice is Q∨ = Z2, rescaled by a factor of
√
2, as the underlying finite root

system is C2. Examining the lowest order terms we find that from the Ansatz,
where the rescaling is taken care of by fractional t,

τ0(σ,η|t) =
∑

n∈Z2, i∈N0/2

e2π
√
−1n·ηt

1
2
(σ+n)2+iB0(σ + n)Z2i(σ + n)
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we find that Z1(σ) should vanish again. Looking at the lowest order gives us the
equation

16 (2σ1 + 1) 2 (σ1 − σ2)
2σ2

2 (σ1 + σ2)
2 (2σ2 − 1) 2 (2σ2 + 1) 2

×B0(σ)B0(σ + e1)B0(σ + e2)B0(σ − e2)

= − (2σ1 + 1) 2B0(σ)
3B0(σ + e1)

with the solution

B0(σ) =
G(1± σ1)G(1± σ2)

G(1± 2σ1)G(1± 2σ2)G(1± σ1 ± σ2)

and further we find

Z2(σ) =
24σ4

1 − 32σ2
2σ

2
1 − 4σ2

1 + 24σ4
2 − 4σ2

2 + 1

2 (2σ1 − 1) 2 (2σ1 + 1) 2 (σ1 − σ2) 2 (σ1 + σ2) 2 (2σ2 − 1) 2 (2σ2 + 1) 2

We do not have at present a clear 4D gauge theory interpretation for this case.

2.2.6 SU(2)n linear quiver gauge theories
In this section we will be focusing on the case of linear SU(2)×n quivers in the pure,
non-conformal case. Our proposal is the following modification of the SU(2) system

τ 20∂log t1∂log tn log τ0 = −t1/41 · · · t1/4n τ 21 (2.39)
τ 21∂log t1∂log tn log τ1 = −t1/41 · · · t1/4n τ 20

Notice that, in the case n > 2, the system of equations explicitely describes only
the dynamics associated to the irregular punctures moduli. As we will see in the
following, the dependence on the moduli of the regular punctures is uniquely fixed by
suitable asymptotic conditions on the solutions. These are obtained in the limiting
cases of identity punctures leading to trivial monodromy or degenerating limits
dividing the punctured Riemann sphere into disconnected components.

We solve to above equations in terms of the following generalised SU(2) quiver
Kiev Ansatz

τj({σk}, {ηk}|t1, ..., tn) =
∑

n1,...,nk∈ j
2
+Z

i1,...,in∈N0

n∏
l=1

(
e2πiηl·nlt

(σl+nl)
2+il

l

)
B0({σk+nk})Zi1,...,in({σk+nk})

where Z0,...,0 ≡ 1. Notice that the shift is simultaneous in all the lattices as there is
no mixing. In the next subsection, by imposing appropriate asymptotic conditions,
we will find that B0({σk + nk}) = Bquiver({σk + nk}) where

Bquiver({σk}) =

n−1∏
i=1

G(1 +mi,i+1 + σi ± σi+1)G(1 +mi,i+1 − σi ± σi+1)

n∏
k=1

G(1± 2σk)
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where mi,j ∈ C are arbitrary bifundamental masses. We conjecture that these
one-loop terms, along with the recursion relations arising from (2.39) and suitable
additional constraints, lead to the identification

Zi1,...,in({σk}) =
∑

(Y⃗1,...,Y⃗n)
|Yk,1|+|Yk,2|=ik

∏n−1
i=1 Zbifund.(σi, ~Yi, σi+1, ~Yi+1,mi,i+1)∏n

i=1 Zbifund.(σi, ~Yi, σi, ~Yi, 0)

where Zbifund. is defined in 1.3.2.

2.2.6.1 One-loop normalisation

Examining the
∏

l t
1+2σl
l term in (2.39) gives, for general n,

(1 + 2σ1)(1 + 2σn)
∑

p1,...,pn∈{0,1}

(−1)1+p1+pn

2
B0({σk + pk})B0({σk + 1− pk})

= −B0

(
{σk +

1

2
}
)2

(2.40)

We prove this by induction. First, we need the auxiliary result that, for k+1 ≤ k−1 ≤
k+2 ≤ k−2 ≤ ... ≤ k+l ≤ k−l , if we denote

σ+ := (σ1, ..., σ
k
+
1 −1

, σ
k
+
1

+ 1, ..., σ
k
−
1

+ 1, σ
k
−
1 +1

, ..., σ
k
+
2 −1

, σ
k
+
2

+ 1, ..., σ
k
−
2

+ 1, σ
k
−
2 +1

, ..., σ
k
+
l

−1
, σ

k
+
l

+ 1, ..., σ
k
−
l

+ 1, σ
k
−
l

+1
, ..., σn)

σ− := (σ1 + 1, ..., σ
k
+
1 −1

+ 1, σ
k
+
1

, ..., σ
k
−
1

, σ
k
−
1 +1

+ 1, ..., σ
k
+
2 −1

+ 1, σ
k
+
2

, ..., σ
k
−
2

, σ
k
−
2 +1

+ 1, ..., σ
k
+
l

−1
+ 1, σ

k
+
l

, ..., σ
k
−
l

, σ
k
−
l

+1
+ 1, ..., σn + 1)

then it follows that

Bquiver(σ+)B
quiver(σ−)

−Bquiver
(
{σk + 1

2
}
)2 =

∏n−1
i=1 (1 + σi + σi+1 ±mi,i+1)∏

i(1 + 2σi)2

×
l∏

q=1

(σk+q −1 − σk+q ±mk+q −1,k+q
)(σk−q − σk−q +1 ±mk−q ,k−q +1)

(1 + σk+q −1 + σk+q ±mk+q −1,k+1
)(1 + σk−q + σk−q +1 ±mk−q ,k−q +1)

Next we need another auxiliary result which we use to tame the summation in
(2.40). Namely, for n ≥ 3

−(σ1 − σ2 ±m1,2)

(1 + σ1 + σ2 ±m1,2)

(
1 +

n−1∑
i1=2

−(σi1 − σi1+1 ±mi1,i1+1)

(1 + σi1 + σi1+1 ±mi1,i1+1)

+
n−1∑
i1=2

−(σi1 − σi1+1 ±mi1,i1+1)

(1 + σi1 + σi1+1 ±mi1,i1+1)

n−1∑
i2=i1+1

−(σi2 − σi2+1 ±mi2,i2+1)

(1 + σi2 + σi2+1 ±mi1,i2+1)

+
n−1∑
i1=2

−(σi1 − σi1+1 ±mi1,i1+1)

(1 + σi1 + σi1+1 ±mi1,i1+1)

n−1∑
i2=i1+1

−(σi2 − σi2+1 ±mi2,i2+1)

(1 + σi2 + σi2+1 ±mi1,i2+1)

n−1∑
i3=i2+1

−(σi3 − σi3+1 ±mi3,i3+1)

(1 + σi3 + σi3+1 ±mi3,i3+1)

+ ...+
n−1∏
i=2

−(σi − σi+1 ±mi,i+1)

(1 + σi + σi+1 ±mi,i+1)

)
=

(σ1 − σ2 ±m1,2)(1 + 2σ2)(1 + 2σn)
∏n−1

i=3 (1 + 2σi)
2∏n−1

i=1 (1 + σi + σi+1 ±mi,i+1)
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This also follows from induction starting from n = 3, for which

−1 +
(σ2 − σ3 ±m2,3)

(1 + σ2 + σ3 ±m2,3)
= − (1 + 2σ2)(1 + 2σ3)

(1 + σ2 + σ3 ±m2,3)

by iterating the identity we get

(σ1 − σ2 ±m1,2)(1 + 2σ2)(1 + 2σn−1)
∏n−2

i=3 (1 + 2σi)
2∏n−2

i=1 (1 + σi + σi+1 ±mi,i+1)

+
−(σn−1 − σn ±mn−1,n)

(1 + σn−1 + σn ±mn−1,n)

(
1 +

n−2∑
i1=2

−(σi1 − σi1+1 ±mi1,i1+1)

(1 + σi1 + σi1+1 ±mi1,i1+1)
+ ...

)
=

(σ1 − σ2 ±m1,2)(1 + 2σ2)(1 + 2σn−1)
∏n−2

i=3 (1 + 2σi)
2∏n−2

i=1 (1 + σi + σi+1 ±mi,i+1)

(
1 +

−(σn−1 − σn ±mn−1,n)

(1 + σn−1 + σn ±mn−1,n)

)
=

(σ1 − σ2 ±m1,2)(1 + 2σ2)(1 + 2σn)
∏n−1

i=3 (1 + 2σi)
2∏n−1

i=1 (1 + σi + σi+1 ±mi,i+1)

which is what we wanted. Using both results, (2.40) becomes equivalent to the
following identity after some reorganizing,

1 +
(σ1 − σ2 ±m1,2)(1 + 2σ2)(1 + 2σn)

∏n−1
i=3 (1 + 2σi)

2∏n−1
i=1 (1 + σi + σi+1 ±mi,i+1)

+
(σ2 − σ3 ±m2,3)(1 + 2σ3)(1 + 2σn)

∏n−1
i=4 (1 + 2σi)

2∏n−1
i=2 (1 + σi + σi+1 ±mi,i+1)

+ ...+
(σn−2 − σn−1 ±mn−2,n−1)(1 + 2σn−2)(1 + 2σn)

(1 + σn−2 + σn−1 ±mn−2,n−1)(1 + σn + σn−1 ±mn,n−1)
− (σn − σn−1 ±mn,n−1)

(1 + σn + σn−1 ±mn,n−1)

=
(1 + 2σ1)(1 + 2σn)

∏n−1
i=2 (1 + 2σi)

2∏n−1
i=1 (1 + σi + σi+1 ±mi,i+1)

2.2.6.2 Instanton terms

The one instanton contributions can be obtained in a similar way. Let us focus on
the detailed analysis of the simplest cases, starting with that of n = 2. To obtain
the instanton terms, we need to impose correct boundary conditions.

• The first condition is the one corresponding to the identity puncture. This
implies that when m1,2 = 0, by setting σ1 = σ2 kills off-diagonal terms in the
expansion of the quiver tau function. Once we equate t1 = t2, the solution
has to equal that of pure SU(2) as the equation it solves is the same. 5 A
detailed proof of this is in the next section.

• The second condition is the one associated to the dividing degeneration limit.
This is obtained by sending m1,2 → ∞ while scaling t1,2 7→ t1,2/m

2
1,2, inducing

the factorization

Zk1,k2(σ1, σ2)

(
t1
m1,2

)k1 ( t2
m1,2

)k2

→ Zk1(σ1)Zk2(σ2)t
k1
1 t

k2
2

5In the D-brane language, this condition can be seen most easily from the Hanany-Witten
brane setup - this is the point at which the theory touches the Higgs branch and the gauge group
gets broken down to the diagonal. There is no bifundamental, and the branes are fixed to move
in unison, ignoring the intermediate NS5 brane.
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This is consistent with (2.39). Indeed, under the scaling itself, the RHS goes
to zero as 1/m1,2, while, the LHS automatically vanishes if the tau function
factorizes.

2.2.6.3 Nekrasov function factorization

Let us show the claim from the previous section, that for the n = 2 quiver,

Zk1,k2(σ, σ)|m1,2=0 =
∑

|Y1|+|Y2|=k1
|W1|+|W2|=k2

Zbifund.(σ,−σ, Y1, Y2, σ,−σ,W1,W2, 0)

Zadj.(σ,−σ, Y1, Y2)Zadj.(σ,−σ,W1,W2)
(2.41)

= δk1,k2Z
SU(2)
k1

(σ)

This can be seen to follow from

Zbifund.(σ,−σ, Y1, Y2, σ,−σ,W1,W2, 0) = δY1,W1δY2,W2Zadj.(σ,−σ, Y1, Y2) (2.42)

which we show to be true in the self-dual case. In the general Ω-background, the
equality (2.42) is not true. Nevertheless, the full sum (2.41) seems to be true
universally, although this follows from more complicated cancellations. In any case,
we are interested only in the self-dual case ε1 = 1, ε2 = −1. With that in mind, we
write

Zbifund.(σ,−σ, Y1, Y2, σ,−σ,W1,W2, 0) =
2∏

i=1

∏
c∈Yi

ξ((−1)1−i2σ, Yi,W1−i, c)
∏
c∈Wi

(
−ξ((−1)1−i2σ,Wi, Y1−i, c)

)
2∏

i=1

∏
c∈Yi

ξ(0, Yi,Wi, c)
∏
c∈Wi

(−ξ(0,Wi, Yi, c))

We prove the last line vanishes unless the Young diagrams are equal as Y1 = W1,
Y2 = W2. Focusing on just one factor,

ξ(0, Y,W, c) = leg(c, Y ) + arm(c,W ) + 1

consider row diagrams Y = (1l1) and W = (1l2) with l1 6= l̃2. WLOG, assume
l1 > l̃2. In this case for c = (l1, 1) we have

leg(c, Y ) = (1l1)t1 − l1 = l1 − l1 = 0

arm(c,W ) = 0− 1 = −1

}
⇒ ξ(0, Y,W, c) = 0− 1 + 1 = 0

However, adding any amount of rows to any of the diagrams after the j = 1 one
doesn’t change this calculation. The other case is l1 = l̃2. Then, for the same
cell, arm(c,W ) = 1 − 1 = 0, and ξ(0, Y,W, c) 6= 0. In fact, both the arm and the
leg lengths have to be positive indefinite, since the cell c is contained within the
diagrams Y and W , so ξ(0, Y,W, c) 6= 0 for the whole row, i.e. i ∈ [1, l1], j = 1.
Next, we add rows to both diagrams, and we are in the same situation as before.
If the rows are of equal length, the cell will be contained in both diagrams and the
relative hook length will never vanish. Otherwise, if the j’th row is the first one of
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unequal length, with lengths l1 > l̃2, say, then the relative hook length of the cell
c = (l1, j) vanishes by an analogous calculation. If all rows are equal, the diagrams
are obviously the same, and there is no vanishing factor. Along with the trivial
equality

Zbifund.(σ,−σ, Y1, Y2, σ,−σ, Y1, Y2, 0) = Zadj.(σ,−σ, Y1, Y2)
this proves our claim.

Direct calculations indicate this is true on the general Omega-background as
well, but I do not have a proof available.

2.2.6.4 Instantons from the Kiev Ansatz

The equation for n = 2 yields two bilinear equations related one to the other by
σi 7→ σi + 1/2 symmetry:∑
n,m∈Z2

i1,i2≥0

e2π
√
−1(n+m)·ηt

(σ1+n1)2+i1+(σ2+n2)2+i2
1 t

(σ1+m1)2+j1+(σ2+m2)2+j2
2

× (i1 − i2 + (n1 − n2)(n1 + n2 + 2σ1)) (j1 − j2 + (m1 −m2)(m1 +m2 + 2σ2))

×B0(σ1 + n1, σ2 +m1)B0(σ1 + n2, σ2 +m2)Zi1,j1(σ1 + n1, σ2 +m1)Zi2,j2(σ1 + n2, σ2 +m2)

= −
∑

n,m∈Z2

i1,i2≥0

e2π
√
−1(n+m)·ηt

1+(σ1+n1)2+σ1+n1+i1+(σ2+n2)2+σ2+n2+i2
1

× t
1+(σ1+m1)2+σ1+m1+j1+(σ2+m2)2+σ2+m2+j2
2

×B0(σ1 + n1 +
1

2
, σ2 +m1 +

1

2
)B0(σ1 + n2 +

1

2
, σ2 +m2 +

1

2
)

× Zi1,j1(σ1 + n1 +
1

2
, σ2 +m1 +

1

2
)Zi2,j2(σ1 + n2 +

1

2
, σ2 +m2 +

1

2
)

The t1t1+2σ2
2 term gives

Z1,0(σ1, σ2+1)−Z1,0(σ1, σ2) = −
2B0(σ1 +

1
2
, σ2 +

1
2
)B0(σ1 − 1

2
, σ2 +

1
2
)

(1 + 2σ2)B0(σ1, σ2)B0(σ1, σ2 + 1)
= −1 + 2σ2

2σ2
1

once we put B0 = Bquiver. The unique solution satisfying the boundary conditions
is

Z1,0(σ1, σ2) =
m2

1,2 + σ2
1 − σ2

2

2σ2
2

Note also the obvious symmetry Zi,j(σ1, σ2) = Zj,i(σ2, σ1) which leads to Z0,1. Fi-
nally, the t1+2σ1

1 t1+2σ2
2 term gets us

Z1,1(σ1, σ2)− Z1,0(σ1, σ2)Z0,1(σ1, σ2)

= 2
B0(σ1 +

1
2
, σ2 − 1

2
)B0(σ1 − 1

2
, σ2 +

1
2
) +B0(σ1 +

1
2
, σ2 +

1
2
)B0(σ1 − 1

2
, σ2 − 1

2
)

B0(σ1, σ2)2

= −
m2

1,2 − σ2
1 − σ2

2

4σ2
1σ

2
2

giving the correct mixed 2-instanton term

Z1,1(σ1, σ2) =
m2

1,2(m
2
1,2 − 1) + σ2

1 + σ2
2 − (σ2

1 − σ2
2)

2

4σ2
1σ

2
2
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In general, we find that the coefficients of the form Zk,0(σ) satisfy simple recurrence
relations, while mixed terms are determined uniquely. We checked agreement with
instanton counting up to Z3,3(σ).
For the SU(2)3 quiver, the boundary conditions are the logical extension of the
above.

• When m1,2 = 0, setting σ1 = σ2 has to kill all terms Zk1,k2,k3 with k1 6= k2.
Further, if we put t1 7→ t

1/2
1 and t2 7→ t

1/2
1 , then(

Zk1,k2,k3(σ1, σ1, σ3)|m1,2=0

)
tk11 t

k2
2 t

k3
3 = Zk1,k3(σ1, σ3)t

k1tk33

where on the RHS we have the partition functions of the SU(2)2 quiver.
Similar considerations apply if m2,3 = 0 and σ2 = σ3. Clearly, at this point
previous considerations apply, and we are free to set the remaining mass to
zero and reach pure SU(2) again.

• We can decouple bifundamental hypermultiplets individually. For instance, by
sending m1,2 → ∞ while scaling t1,2 7→ t1,2/m

2
1,2, we obtain the factorization

Zk1,k2,k3(σ1, σ2, σ3)

(
t1
m1,2

)k1 ( t2
m1,2

)k2

tk33 → Zk1(σ1)Zk2,k3(σ2, σ3)t
k1
1 t

k2
2 t

k3
3

Again, under any factorization, the LHS of (2.39) vanishes.

We present in brief the lowest order calculations for the SU(2)3 quiver. The
t1+2σ1
1 t1+2σ2

2 t1+2σ3
3 term leads to the one-loop term already discussed in general in

the main text. Next, the Za,b,c coefficients with positive integers a2 + b2 + c2 = 1

are accessed by looking at t1+2(1−a)σ1

1 t
1+2(1−b)σ2

2 t
1+2(1−c)σ3

3 terms. This leads to(
−2m2

2,3 + 2σ2 (σ2 + 1) + 2σ3 (σ3 + 1) + 1
)
Z1,0,0 (σ1, σ2, σ3)

=
(
(σ2 − σ3)

2 −m2
2,3

)
(2Z1,0,0 (σ1, σ2, σ3 + 1)− Z1,0,0 (σ1, σ2 + 1, σ3))

+
(
(1 + σ2 + σ3)

2 −m2
2,3

)
Z1,0,0 (σ1, σ2 + 1, σ3 + 1) +

(2σ3 + 1) (2σ2 + 1) 2

2σ2
1

⇒ Z1,0,0(σ1, σ2, σ3) =
m2

1,2 + σ2
1 − σ2

2

2σ2
1

,

an analogous equation for Z0,0,1 which we omit, and finally

Z0,1,0 (σ1, σ2, σ3) + Z0,1,0 (σ1 + 1, σ2, σ3 + 1)

= Z0,1,0 (σ1, σ2, σ3 + 1) + Z0,1,0 (σ1 + 1, σ2, σ3) +
(2σ1 + 1) (2σ3 + 1)

2σ2
2

⇒ Z0,1,0(σ1, σ2, σ3) =
−4σ2

2m1,2m2,3 +m2
2,3

(
m2

1,2 − σ2
1 + σ2

2

)
+ (σ2

2 − σ2
3)
(
m2

1,2 − σ2
1 + σ2

2

)
2σ2

2

The Za,b,c coefficients with positive integers a2 + b2 + c2 = 2 are likewise accessed
by looking at t1+2(1−a)σ1

1 t
1+2(1−b)σ2

2 t
1+2(1−c)σ3

3 terms. They feature the terms we cal-
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culated in the previous step.

(Z0,1,0 (σ1, σ2, σ3) + Z0,1,0 (σ1, σ2, σ3 + 1))Z1,0,0 (σ1, σ2, σ3) + Z1,1,0 (σ1, σ2, σ3)

=
(2σ3 + 1)

(
−m2

1,2 + σ2
1 + σ2

2

)
4σ2

1σ
2
2

+ 2Z0,1,0 (σ1, σ2, σ3)Z1,0,0 (σ1, σ2, σ3 + 1) + Z1,1,0 (σ1, σ2, σ3 + 1)

⇒ Z1,1,0(σ1, σ2, σ3) = −
4σ2

2m1,2m2,3

(
m2

1,2 + σ2
1 − σ2

2

)
−m2

1,2

(
m2

1,2 − 1
) (
m2

2,3 + σ2
2 − σ2

3

)
4σ2

1σ
2
2

−
(σ4

1 − (2σ2
2 + 1)σ2

1 + σ4
2 − σ2

2)
(
m2

2,3 + σ2
2 − σ2

3

)
4σ2

1σ
2
2

as well as an analogous equation for Z0,1,1, and

2Z1,0,1 (σ1, σ2, σ3) + Z1,0,1 (σ1, σ2 + 1, σ3)

= Z0,0,1 (σ1, σ2 + 1, σ3)Z1,0,0 (σ1, σ2, σ3) + Z0,0,1 (σ1, σ2, σ3)Z1,0,0 (σ1, σ2 + 1, σ3)

+Z1,0,0 (σ1, σ2, σ3)Z0,0,1 (σ1, σ2, σ3) +
(2σ2 + 1) 2

4σ2
1σ

2
3

⇒ Z1,0,1(σ1, σ2, σ3) =

(
m2

1,2 + σ2
1 − σ2

2

) (
m2

2,3 − σ2
2 + σ2

3

)
4σ2

1σ
2
3

Finally, Z1,1,1 is found from the t1t2t3 terms,

Z1,1,1 (σ1, σ2, σ3) =

(
−m2

1,2 + σ2
1 + σ2

2

) (
−m2

2,3 + σ2
2 + σ2

3

)
8σ2

1σ
2
2σ

2
3

= Z0,0,1 (σ1, σ2, σ3)Z0,1,0 (σ1, σ2, σ3)Z1,0,0 (σ1, σ2, σ3)

+Z1,0,0 (σ1, σ2, σ3)Z0,1,1 (σ1, σ2, σ3) + Z1,1,0 (σ1, σ2, σ3)Z0,0,1 (σ1, σ2, σ3)

−2Z0,1,0 (σ1, σ2, σ3)Z1,0,1 (σ1, σ2, σ3)

⇒ Z1,1,1(σ1, σ2, σ3) =
4σ2

2 (σ
2
2 − σ2

1)m1,2m2,3

(
m2

2,3 − σ2
2 + σ2

3

)
− 4σ2

2m
3
1,2m2,3

(
m2

2,3 − σ2
2 + σ2

3

)
8σ2

1σ
2
2σ

2
3

+
(σ4

1 − (2σ2
2 + 1)σ2

1 + σ4
2 − σ2

2)
(
−m4

2,3 +m2
2,3 + σ4

2 − (2σ2
3 + 1)σ2

2 + σ4
3 − σ2

3

)
8σ2

1σ
2
2σ

2
3

−
m2

1,2

(
m2

1,2 − 1
) (

−m4
2,3 +m2

2,3 + σ4
2 − (2σ2

3 + 1)σ2
2 + σ4

3 − σ2
3

)
8σ2

1σ
2
2σ

2
3

2.2.7 Discussion
Let us comment on other interesting directions to investigate further.

• From the bulk four dimensional gauge theory perspective the τ -system we find
and its possible generalizations are expected to describe chiral ring relations
in presence of a surface operator. Schematically, we expect eq.(2.5) to derive
from the following fusion rule among the chiral operator O = trφ2 and the
surface operator Wβ

〈: O2 : Wβ〉 = −β∨ · β∨

2
t1/h

∨ ∏
α∈∆̂,α 6=β

〈Wα〉−α·β∨
,

while higher chiral observables should generate the flows of the full non-
autonomous Toda hierarchy.

Fran Globlek 107



Generalized Painlevé equations

• The τ -functions we compute in this work could be used to describe through
their zeroes the spectrum of the quantum Toda chain integrable system along
the lines of [25, 44].

• It should be possible to apply the approach proposed here to general class-S
theories [96] by studying the related isomonodromic deformation problem, for
example for circular quivers, generalising to other classical groups the results
of [38, 39]. It would be also interesting to extend the analysis to non-self-dual
Ω-background, which should amount to the quantization of the τ -systems, and
its lift to five dimensional gauge theories on R4×S1, which should correspond
to quantum q-difference τ -systems [28, 40, 41, 46, 55, 220]. I address this last
issue partly in the next section.

• The expansion in the large couplings regime should also be considered by ex-
tending the analysis of [47, 152]. Actually, the RG evolution at strong coupling
can be analysed through late time expansion of the τ -functions. In particular,
in [45] the solution in this regime for the An series has been given in terms of
a matrix model describing the theory around the massless monopoles point
which generalizes the O(2) matrix model of [201]. As a related problem, it
would be also interesting to priovide a Fredholm determinant/Pfaffian repre-
sentation for the τ -functions presented here, see for example [33] for the case
of orthogonal groups. It would also be interesting to study the extension to
defects in supergroup gauge theories, see for example [173].
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2.3 Other directions
Here I present other work related to extending the Painlevé/Gauge correspondence.
First we look at d = 5 theories and q-difference equation lifts, then at c = −2 tau
functions from blowup equations, and finally at a generalisation of the G = U(2)
tau system to an arbitrary amount of fundamental flavours.

2.3.1 5d Nekrasov functions
In the introduction and in the first section, we focused on d = 4 super Yang-
Mills. Consider now pure 5 dimensional super Yang-Mills with 8 supercharges on
S1
R × R4

ϵ1,ϵ2
with simple gauge group G on its Coulomb branch, parametrized by

α ∈ g∨ = LieGL. Following [28], write q1,2 = eRϵ1,2 , u = eRα, and let further
ω = logu/

√
− log q1 log q2, where these are to be understood component-wise in

the canonical vector space where the root system is realized. Then

Zcl(u, q1, q2|z) = exp

{
log
(
(q1q2)

−h∨/2R2h∨
z
) ∑

i log
2 ui

−2 log q1 log q2

}
=
(
(q1q2)

−h∨/2R2h∨
z
) 1

2
ω2

Z1−loop(u, q1, q2) =
∏
α∈R

(uα; q1, q2)∞

Zinst(u, q1, q2|z) =
∑
k≥0

(
(q1q2)

−h∨/2R2h∨
z
)k
Zk(u, q1, q2)

All information about the special functions will is collected in the appendix A.
Invariance under q1 ↔ q2 and, separately, u 7→ u−1 is immediate for Zcl and Z1−loop,
and therefore, for the full partition function, inasmuch as Zinst follows from the
classical and 1-loop asymptotics. For SU(N), the instanton part is invariant under
q1, q2 7→ q−1

1 , q−1
2 [216, 217]. This is to be expected in the general case, as well.

Recall that the localization in equivariant cohomology is done by a topologically
twisted scalar supercharge Q which squares to a rotation up to exact terms,

Q2 = £v + ..., v = ε1(x1∂x2 − x2∂x1) + ε2(x3∂x4 − x4∂x3)

Therefore, the signs of the ε parameters should be immaterial. On the other hand,
the symmetry properties of the classical6 and 1-loop parts are

Zcl(u, q
−1
1 , q−1

2 |z) = (q1q2)
h∨·

∑
i log

2 ui
−2 log q1 log q2Zcl(u, q1, q2|z)

Z1−loop(u, q
−1
1 , q−1

2 ) =
∏

α∈R+

(−uαθ−1(uα, q1)θ
−1(uα, q2))Z1−loop(u, q1, q2)

= (−1)|R+|u2ρ
∏

α∈R+

(θ−1(uα, q1)θ
−1(uα, q2))Z1−loop(u, q1, q2)

As is to be expected, for the self-dual q1 = q−1, q2 = q both asymmetry factors
become unity. We then specialize to the c = −2 background, q1 = q−1, q2 = q2. In

6Sometimes, the instanton counting parameter is redefined to absorb the q1q2 factor, which is
immaterial for the self-dual background.
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this case, using

−zθ−1(z; q−1)θ−1(z; q2) =
θ(z; q)

θ(z; q2)
= θ(qz; q2)

we find

Zcl(u, q, q
−2|z) = q

h∨
∑

i log
2 ui

4 log2 q Zcl(u, q
−1, q2|z)

Z1−loop(u, q, q
−2) =

 ∏
α∈R+

θ(quα; q2)

Z1−loop(u, q
−1, q2)

Using the identity
θ(qz; q2) = θ(qz−1; q4)θ(qz; q4)

we rewrite the full expression more symmetrically,

A(u, q) :=
Zfull(u, q, q

−2|z)
Zfull(u, q−1, q2|z)

= q
h∨

∑
i log

2 ui
4 log2 q

∏
α∈R

θ(quα; q4)

defining an asymmetry factor which does not depend on z. Using properties of
q-theta functions we find that, if λ is a miniscule coweight,

A(uq2λ, q)

A(u, q)
= uh∨λqh

∨λ2
∏
α∈R
α·λ=1

(
1

−quα

)

It is a fun exercise to show that∑
α∈R
α·λ=1

α = h∨λ,
∏
α∈R
α·λ=1

z = zh
∨λ2

and, therefore,
A(uq2λ, q)

A(u, q)
= (−1)h

∨λ2

If λ is not miniscule, but any coweight, the same holds, but it is harder to show7.
We have

A(uq2λ, q)

A(u, q)
= uh∨λqh

∨λ2
∞∏
n=1

∏
α∈R
α·λ=n

(
1

(−q)n2unα

)
= (−1)h

∨λ2 (2.43)

2.3.1.1 q-Painlevé

Noting that if q = eR, as R → 0

D2
q(f) := f(qz)f(q−1z)− f(z)2 = R2D2(f) +O(R)4

7We can show it just for the simple coroots, since they along with the miniscule coweights
generate the coweight lattice.
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where D2(f) = f 2∂2log z log f , we expect bilinear relations similar to the ones in 4
dimensions. As before, if α is a root corresponding to the a miniscule coweight λ,
we assign it the Kiev Ansatz

τα =
∑

n∈λ+Q∨

sm︸︷︷︸
Defect

z
1

2 log2 q

∑
i log

2(uiq
m
i )

︸ ︷︷ ︸
Zcl.

B0(uq
m)︸ ︷︷ ︸

Z1−loop

∑
i

ziZi(uq
m)︸ ︷︷ ︸

Zinst

We can give the classical part a makeover by using, as before, ω = 1
log q

logu, as
then

Zcl(uq
m) = z

1
2
ω2+ω·m+ 1

2
m2

meaning

D2
q(τλ) =

∑
m1,m2∈Q∨

λ
i1,2∈Z≥0

zω
2+ 1

2
m2

1+
1
2
m2

2+(m+n)·ω+i1+i2
(
q

1
2
m2

1−
1
2
m2

2+(m−n)·ω+i1−i2 − 1
)

B0(uq
m1)B0(uq

m1)Zi1(uq
m1)Zi2(uq

m2)

Next I define the q-analogue of the 4d isomonodromic systems we already studied,
which I lift in the minimal fashion:

D2
q(τα) = −α2

2

∏
β∈∆̂\{α}

τ−α∨·β
β

Here note that the Kiev Ansatz is defined only for the roots corresponding to minis-
cule coweights. The other tau functions can be obtained from the former.

2.3.1.2 1 loop term

Before considering the q-analogues of our isomonodromic equations, we begin the
ritual of painstaking examination of properties of Z1−loop. In the self-dual back-
ground we have

Z1−loop(uq
m, q) =

∏
α∈R

(uαqα·m; q−1, q)∞ =
∏
α∈R

(uαq1+α·m; q, q)−1
∞ =

∏
α∈R

(uαqα·m; q)∞
(uαqα·m; q, q)∞

In particular we can write

Z1−loop(uq
m, q)

Z1−loop(u, q)
=
∏
α∈R

(uα; q, q)∞
(uαqα·m; q, q)∞

(uαqα·m; q)∞
(uα; q)∞

=
∏

α∈R,n∈N
α·m=n

(uα; q, q)∞
(uαqn; q, q)∞

(u−α; q, q)∞
(u−αq−n; q, q)∞

(uαqn; q)∞
(uα; q)∞

(u−αq−n; q)∞
(u−αq; q)∞
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Since,

(z; q, q)∞
(zqn; q, q)∞

=
n−1∏
k=0

(zqk; q, q)∞
(zqk+1; q, q)∞

=
n−1∏
k=0

(zqk; q)∞

(z−1; q, q)∞
(z−1q−n; q, q)∞

=
n−1∏
k=0

1

(z−1qk−n; q)∞

(zqn; q)∞
(z; q)∞

=
n−1∏
k=0

(zqk+1; q)∞
(zqk; q)∞

=
n−1∏
k=0

1

1− zqk

(z−1q−n; q)∞
(z−1; q)∞

=
n−1∏
k=0

(
1− z−1qk−n

)

we have the end result

Z1−loop(uq
m, q)

Z1−loop(u, q)
=

∏
α∈R,n∈N
α·m=n

n−1∏
k=0

1− u−αqk−n

1− uαqk
(uαqk; q)∞

(u−αqk−n; q)∞

2.3.1.3 An

The q-analogue
D2

q(τ0) = −z
1

n+1 τ1τn

leads to equations specifying the 1-loop term

(up1up2)
−1(qup1 − up2)

2B0(uq
ep1−ep2 )B0(u) = −2B0(uq

ep1 )B0(uq
−ep2 )

where p1 6= p2 and

Z1(u) = −2
q

(1− q)2

∑
k

B0(uq
ek)B0(uq

−ek)

B0(u)2

via the lowest order. Note that the term

− q

(1− q)2
=

1

(1− q−1)(1− q)

corresponds to the character of C2 under the self-dual U(1)2 rotation, corresponding
to the center of the instanton.

2.3.1.4 Bn, Dn

The q-analogue
D2

q(τ0) = D2
q(τ1) (2.44)

leads to the equations specifying the 1-loop term

(qup1up2 − 1)2B0(uq
ep1+ep2 )B0(u) = q(up1 − up2)

2B0(uq
ep1 )B0(uq

ep2 )
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where p1 6= p2. Consider now

ZDn
1−loop(u) =

∏
i 6=j

(
ui
uj

; q−1, q)∞
∏
i<j

(uiuj; q
−1, q)∞(

1

uiuj
; q−1, q)∞

ZBn
1−loop(u) = ZDn

1−loop(u)
∏
i

(ui; q
−1, q)∞(

1

ui
; q−1, q)∞

By the properties from a previous section, we see that the following holds for both
functions (X ∈ {B,D}):

ZXn
1−loop(uq

ep1+ep2 )ZXn
1−loop(u)

ZXn
1−loop(uq

ep1 )ZXn
1−loop(uq

ep2 )
=

(
1− up1

up2

)(
1− up2

up1

)
(1− up1up2)

(
1− 1

up1up2
q−2
)

(
1− up2

up1
q−1
)(

1− up1

up2
q−1
)(

1− 1
up1up2

q−1
)
(1− up1up2q)

×

(
1

up1up2
q−1; q

)
∞

(
up1

up2
q−1; q

)
∞

(
up2

up1
q−1; q

)
∞
(up1up2q; q)∞(

1
up1up2

q−2; q
)

∞

(
up1

up2
; q
)
∞

(
up2

up1
; q
)
∞
(up1up2 ; q)∞

=

(
1− up1

up2

)(
1− up2

up1

)
(1− up1up2)

(
1− 1

up1up2
q−2
)

(
1− up2

up1
q−1
)(

1− up1

up2
q−1
)(

1− 1
up1up2

q−1
)
(1− up1up2q)

×
(
1− 1

up1up2
q−2

)−1(
1− up1

up2
q−1

)(
1− up2

up1
q−1

)
(1− up1up2)

−1

=

(
1− up1

up2

)(
1− up2

up1

)
(
1− 1

up1up2
q−1
)
(1− up1up2q)

=
q(up1 − up2)

2

(qup1up2 − 1)2

therefore we can set B0(u) = f(u)Z1−loop(u) and f(u) will be a periodic on the
coroot lattice. Next we have the 1-instanton

ZDn
1 (u) =

q

(1− q)2

∑
k

(1− u2k)
2

u2k

BDn
0 (uqek)BDn

0 (uq−ek)

BDn
0 (u)2

=
q

(1− q)2

∑
k

(1− u2k)
2

u2k

∏
l 6=k

(
1− uk

ul

)−1(
1− ul

uk

)−1

(1− ukul)
−1

(
1− 1

ukul

)−1

=
q

(1− q)2

∑
k

(1− u2k)
2u2n−4

k

∏
l 6=k

ul
(uk − ul)2(1− ukul)2

For n ≥ 3 we can compare these with universal expressions and we find agreement.
The case n = 2 is special. Note that we have an isomorphism D2

∼= A1 × A1.
In the 4 dimensional case, we found τD2 = (τA1)2, but there we could use special
properties of the Hirota derivative to find that

D2((τA1
0 )2) = 2(τA1

0 )2D2(τA1
0 ) = 2D2(τA1

1 )(τA1
1 )2 = D2((τA1

1 )2)

The q-analogue does not share the same properties. From the definition we get the
following behaviour of the Hirota q-derivative:

D2
q(f

n) =
(
D2

q(f) + f 2
)n − f 2n

D2
q(f · g) = D2

q(f)D
2
q(g) + f 2D2

q(g) + g2D2
2(g)
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Interestingly, we find that if we formulate the system (2.44) for D2, then

(1− q)2

q
ZD2

1,here(u) =
u21 + u22 − 4u21u

2
2 + u41u

2
2 + u21u

4
2

(u1 − u2)2(u1u2 − 1)2
= 1 +

(1− q)2

q
ZD2

1,elsewhere(u)

In particular, whereas in the 4d case we found that

ZD2
1,4d (σ1 + σ2, σ1 − σ2) = ZA1

1,4d(σ1) + ZA1
1,4d(σ2)

here we see that

ZD2
1 (u) =

q

(1− q)2
+ ZA1

1 (u1u2) + ZA1
1 (u1/u2)

For the Bn gauge group, we find

ZBn
1 (u) = − q

(1− q)2

∑
k

(1 + uk)
2u2n−3

k

∏
l 6=k

ul
(uk − ul)2(1− ukul)2

which agrees with the literature for all n ≥ 2.

2.3.2 (−1)-blowup relations
We can write the d = 5 blowup relations for an arbitrary8 simple gauge group G.
The K-theoretic partition function on the blown up geometry Ĉ2 is going to be
given by9 We call these blowup relations (−1)-blowup relations as they have to do
with replacing the origin with the exceptional divisor which is a (−1)-curve. These
relations relate c = 1 to c = −2 tau functions, but cannot give us bilinear relations
on the tau functions themselves.

Ẑλ,d(u, q1, q2|z) = (q1q2)
− (4d−h∨)(h∨−1)

48

∑
n∈λ+Q∨

Z(uqn1 , q1, q2q
−1
1 |qd−

h∨
2

1 z)Z(uqn2 , q1q
−1
2 , q2|q

d−h∨
2

2 z)

where d is the "exceptional divisor observable". The blowup formulas say that

Ẑλ,d(u, q1, q2|z) =


(
(q1q2)

−h∨/2R2h∨
z
)λ2/2

Z(u, q1, q2|z) d = 0

χQ∨(λ)Z(u, q1, q2|z) 0 < d < h∨

(−1)h
∨λ2 (

(q1q2)
+h∨/2R2h∨

z
)λ2/2

Z(u, q1, q2|z) d = h∨

These we specialize to q2 = q−1
1 = q. Note that, using (2.43), the d = 0 and d = h∨

equations equate(
R2h∨

z
)λ2/2

Z(u, q−1, q|z) =
∑

n∈λ+Q∨

Z(uq−n, q−1, q2|q
h∨
2 z)Z(uqn, q−2, q|q−

h∨
2 z)

(2.45)
while the others become

χQ∨(λ)Z(u, q−1, q|z) =
∑

n∈λ+Q∨

Z(uq−n, q−1, q2|q−d+h∨
2 z)Z(uqn, q−2, q|qd−

h∨
2 z)

(2.46)
8Conjectural, except in case of SU(N) by [216, 217], but with strong evidence.
9Comparing with [124], one sees that their "r" corresponds to our h∨. We would be in trouble

if that were the rank, but what they consider is SU(r) for which r = h∨.
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2.3.2.1 Tau functions

Next we define |P∨/Q∨| tau functions as the multiplicative Zak transforms of the
hitherto considered partition functions. These we call

τλ(u,σ|z) =
∑

n∈λ+Q∨

σnZ(uqn, q−1, q|z)

τ±λ (u,σ|z) =
∑

n∈λ+Q∨

σn/2Z(uqn, q∓1, q±2|z)

Next we consider taking the same transform of the blowup equations (2.45), (2.46).
As an example for λ = ~0, we can say in a unified fashion

τ0(u,σ|z) =
∑

n,m∈Q∨

σmZ(uqm−n,q−1,q2|q−d+h∨
2 z)Z(uqm+n,q−2,q|qd−

h∨
2 z)

=
∑

n+,n−∈Q∨

σ
n−
2 Z(uqn

−
, q−1, q2|q−d+h∨

2 z)σ
n+

2 Z(uqn
+

, q−2, q|qd−
h∨
2 z)

=τ+0 (u,σ|q−d+h∨
2 z)τ−0 (u,σ|qd−

h∨
2 z)

for any d ∈ 0, ..., h∨. We can write this more symmetrically as

2τ0(u,σ|z) = τ+0 (u,σ|q−d+h∨
2 z)τ−0 (u,σ|qd−

h∨
2 z)+τ+0 (u,σ|qd−

h∨
2 z)τ−0 (u,σ|q−d+h∨

2 z)

and restrict d < h∨/2, which gives 1 + bh∨/2c equations. We can distinguish 2
cases, depending on the parity of h∨. In the case of an even Coxeter number we
necessarily have the two equations

2τ0(z) = 2τ+0 (z)τ
−
0 (z) = τ+0 (qz)τ

−
0 (q

−1z) + τ+0 (q
−1z)τ−0 (qz)

Therefore, as in [27],

τ0(qz)τ0(q
−1z)− τ0(z)

2 = τ+0 (qz)τ
−
0 (qz)τ

+
0 (q

−1z)τ−0 (q
−1z)− 1

4
(τ+0 (qz)τ

−
0 (q

−1z) + τ+0 (q
−1z)τ−0 (qz))

2

= −1

4
(τ+0 (qz)τ

−
0 (q

−1z)− τ+0 (q
−1z)τ−0 (qz))

2

In the case of an odd Coxeter number we necessarily have the two equations

2τ0(z) = τ+0 (q
1
2 z)τ−0 (q

− 1
2 z)+τ+0 (q

− 1
2 z)τ−0 (q

1
2 z) = τ+0 (q

3
2 z)τ−0 (q

− 3
2 z)+τ+0 (q

− 3
2 z)τ−0 (q

3
2 z)

Therefore,

τ0(qz)τ0(q
−1z)− τ0(z)

2 = (τ+0 (q
3
2 z)τ−0 (q

1
2 z) + τ+0 (q

1
2 z)τ−0 (q

3
2 z))

× (τ+0 (q
− 1

2 z)τ−0 (q
− 3

2 z) + τ+0 (q
− 3

2 z)τ−0 (q
− 1

2 z))

− (τ+0 (q
1
2 z)τ−0 (q

− 1
2 z) + τ+0 (q

− 1
2 z)τ−0 (q

1
2 z))(τ+0 (q

3
2 z)τ−0 (q

− 3
2 z) + τ+0 (q

− 3
2 z)τ−0 (q

3
2 z))

= −(τ+0 (q
− 3

2 z)τ−0 (q
1
2 z)− τ+0 (q

1
2 z)τ−0 (q

− 3
2 z))(τ+0 (q

− 1
2 z)τ−0 (q

3
2 z)− τ+0 (q

3
2 z)τ−0 (q

− 1
2 z))
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In [32], it was found that for G = SU(2) the blowup equations imply the Toda-
like tau form. For other groups, however, I find that I can rewrite the q-Painlevé
Toda-like equations for the c = 1 tau functions in terms of the c = −2 tau functions
using the above formulas. In simplifying the sum, differences of vectors in different
lattice cosets can yield a vector in yet a third coset – attention must be payed to
the root system in question. However, this ends up being a system of equations for
the c = −2 tau functions. I was not able to reduce it further.

2.3.3 U(2) with Nf fundamental flavors
Recall that the equation for the one-loop normalization obtained from inserting the
Kiev Ansatz for G = SU(2) in the appropriate tau form equation is (2.15). Consider
writing it as follows,

B0(σ1 + 1, σ2; {mk})B0(σ1, σ2 − 1; {mk})
B0(σ1 + 1, σ2 − 1; {mk})B0(σ1, σ2; {mk})

= −(1 + σ1 − σ2)
2 (2.47)

where I have inserted some extra parameters, the explicit dependence on which is

B0(σ1, σ2; {mk}) = Bfund.
0 (σ1, σ2; {mk})Badj.

0 (σ1, σ2)

where

Bfund.
0 (σ1, σ2; {mk}) =

Nf∏
k=1

G(1 +mk + σ1)G(1 +mk + σ2)

Badj.
0 (σ1, σ2) =

1

G(1 + σ1 − σ2)G(1− σ1 + σ2)

as {e1, e2} are weights of the fundamental ( ), and {e1−e2, e2−e1, 0} of the adjoint
representation ( ) of U(2). We already know from before that

Badj
0 (σ1 + 1, σ2)B

adj.
0 (σ1, σ2 − 1)

Badj
0 (σ1 + 1, σ2 − 1)Badj

0 (σ1, σ2)
= −(1 + σ1 − σ2)

2

and we calculate directly that the same is true in this case, as

Bfund.
0 (σ1 + 1, σ2; {mk})Bfund.

0 (σ1, σ2 − 1; {mk})
Bfund.

0 (σ1 + 1, σ2 − 1; {mk})Bfund.
0 (σ1, σ2; {mk})

=

Nf∏
k=1

G(1 +mk + σ1 + 1)G(1 +mk + σ2) ·G(1 +mk + σ1)G(1 +mk + σ2 − 1)

G(1 +mk + σ1 + 1)G(1 +mk + σ2 − 1) ·G(1 +mk + σ1)G(1 +mk + σ2)

= 1

Therefore, we have a solution of the one-loop normalization, with asymptotics

logB0 ∼
∑
i

(σ·λadj
i )2 log

(
σ · λadj

i

)2
−
∑
k

∑
i

(σ·λfund
i +mk)

2 log
(
σ · λfund

i +mk

)2
Further, by inserting this solution into the recursion relation, which is unchanged,
we obtain

Z1(σ;m) = −
2∑

i=1

B0(σ ± ei);m)

B0(σ;m)2
=

2∑
i=1

∏
k(σi +mk)∏

j 6=i(σi − σj)2
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and a more involved expression for higher instantons. These all agree with instanton
counting (checked up to 4 instantons with Nf = 1, 2, up to 2 instantons with
Nf = 3, 4, 5).

Next is the 2-instanton:

Z2(σ;m) =− 1

4

n+1∑
i=1

B0(σ ± ei;m)

B0(σ;m)2
[Z1(σ + ei;m) + Z1(σ − ei;m)]

−
n+1∑
i<j

(σi − σj)
2B0(σ ± (ei − ej);m)

B0(σ;m)2

This is for U(n), we specialize to U(2) to get

Z2(σ1, σ2;m) = −1

4

B0(σ1 ± 1, σ2;m)

B0(σ;m)2
[Z1(σ1 + 1, σ2;m) + Z1(σ1 − 1, σ2;m)]

−1

4

B0(σ1, σ2 ± 1;m)

B0(σ;m)2
[Z1(σ1, σ2 + 1;m) + Z1(σ1, σ2 − 1;m)]

−(σ1 − σ2)
2B0(σ1 + 1, σ2 − 1;m)B0(σ1 − 1, σ2 + 1;m)

B0(σ;m)2

The new thing to calculate is the last term. We consider just one flavor with mass
m (Nf = 1).

B0(σ1 + 1, σ2 − 1;m)B0(σ1 − 1, σ2 + 1;m)

B0(σ;m)2
=

(
G(1 +m+ σ1)G(1 +m+ σ2)

G(1 + σ12)G(1− σ12)

)−2

G(1 +m+ σ1 + 1)G(1 +m+ σ2 − 1)

G(3 + σ12)G(−1− σ12)
· G(1 +m+ σ1 − 1)G(1 +m+ σ2 + 1)

G(−1 + σ12)G(3− σ12)

=
G(2 +m+ σ1)G(m+ σ1)

G(1 +m+ σ2)2
· G(2 +m+ σ1)G(m+ σ2)

G(1 +m+ σ2)2

× G(1 + σ12)
2G(1− σ12)

2

G(3 + σ12)G(−1 + σ12)G(−1− σ12)G(3− σ12)

Now use
G(2 + x)G(x)

G(1 + x)2
=

Γ(1 + x)Γ(x)G(x)2

Γ(x)2G(x)2
= x

for the first terms, and, treating independently σ12 and −σ12,

G(1 + x)2

G(3 + x)G(−1 + x)
=

Γ(x)2

G(x)2︷ ︸︸ ︷
Γ(−1 + x)2G(−1 + x)2

Γ(2 + x)Γ(1 + x)Γ(x)Γ(−1 + x)G(−1 + x)2

=
Γ(x)Γ(−1 + x)

Γ(2 + x)Γ(1 + x)
=

1

(1 + x)x2(1− x)

to get

B0(σ1 + 1, σ2 − 1;m)B0(σ1 − 1, σ2 + 1;m)

B0(σ;m)2
=

(m+ σ1)(m+ σ2)

(1 + σ12)2σ4
12(1− σ12)2

Fran Globlek 117



Generalized Painlevé equations

Therefore we obtain the two-instanton term

Z2(σ1, σ2;m) =
1

4

m+ σ1
σ2
12

[(m+ σ1 + 1

(1 + σ12)2
+

m+ σ2
(1 + σ12)2

)
+
(m+ σ1 − 1

(−1 + σ12)2
+

m+ σ2
(−1 + σ12)2

)]

+
1

4

m+ σ2
σ2
12

[( m+ σ1
(−1 + σ12)2

+
m+ σ2 + 1

(−1 + σ12)2

)
+
( m+ σ1
(1 + σ12)2

+
m+ σ2 − 1

(1 + σ12)2

)]

− (m+ σ1)(m+ σ2)

(1 + σ12)2σ2
12(1− σ12)2

Before we attempt to simplify, we have to look at what instanton counting tells us.
We have the following components of the count:

Z ,∅ =
(m+ σ1)(m+ σ1 − 1)

4σ2
12(−1 + σ12)2

, Z∅, =
(m+ σ2)(m+ σ2 − 1)

4σ2
12(1 + σ12)2

Z ,∅ =
(m+ σ1)(m+ σ1 + 1)

4σ2
12(1 + σ12)2

, Z∅, =
(m+ σ2)(m+ σ2 + 1)

4σ2
12(−1 + σ12)2

Z , =
(m+ σ1)(m+ σ2)

(−1 + σ12)2(1 + σ12)2

Therefore we can distribute and identify

Z2(σ1, σ2;m) = Z ,∅ +
1

4

m+ σ1
σ2
12

m+ σ2
(1 + σ12)2

+Z ,∅ +
1

4

m+ σ1
σ2
12

m+ σ2
(−1 + σ12)2

+
1

4

m+ σ2
σ2
12

m+ σ1
(−1 + σ12)2

+ Z∅,

+
1

4

m+ σ2
σ2
12

m+ σ1
(1 + σ12)2

+ Z∅, − (m+ σ1)(m+ σ2)

(1 + σ12)2σ2
12(1− σ12)2

And finally we have that, collecting all the rest,

1

4

m+ σ1
σ2
12

m+ σ2
(1 + σ12)2

+
1

4

m+ σ1
σ2
12

m+ σ2
(−1 + σ12)2

+
1

4

m+ σ2
σ2
12

m+ σ1
(−1 + σ12)2

+
1

4

m+ σ2
σ2
12

m+ σ1
(1 + σ12)2

− (m+ σ1)(m+ σ2)

(1 + σ12)2σ2
12(1− σ12)2

=
(m+ σ1)(m+ σ2)

2σ2
12(1 + σ12)2(1− σ12)2

(
(1 + σ12)

2 + (−1 + σ12)
2 − 2

)

=
(m+ σ1)(m+ σ2)

(1 + σ12)2(1− σ12)2
= Z ,

Therefore,

Z2(σ1, σ2;m)isomonodromy = Z ,∅ + Z∅ + Z ,∅ + Z∅, + Z , = Zcounting
2

2.3.3.1 SU(2) vs U(2)

Note that in equation (2.47) we vary the vevs independently. This is the same
situation as in instanton counting. Later, we can set σ1 = −σ2 = σ and all our
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results reproduce massive SU(2) theory. However, if we start from SU(2) directly
we cannot obtain anything other than pure theory. It is easy to check that

B0(σ + 1/2; {mk})2

B0(σ + 1; {mk})B0(σ; {mk})
= −(1 + 2σ)2

is not satisfied by

B0(σ) =

Nf∏
k=1

G(1 +mk ± σ)

G(1± 2σ)

unless Nf = 0. Here there is a mystery. Namely, the U(2) Kiev Ansatz has to be
the same as the SU(2) one, in the sense that they have to share the same lattice
Q = {(n,−n)|n ∈ Z}. My manipulations in the previous section imply that

τ(σ,η|t) :=
∑
n∈Q

eη·nt
1
2
(σ+n)2B0(σ + n;m)Z(σ + n;m|t)

satisfies
D2

log t[τ(σ,η|t)] = −τ(σ − (1, 0),η|t)τ(σ + (1, 0),η|t) (2.48)

Consider, however, an alternative definition, with the lattice Q = Z2. In the follow-
ing it will be convenient to write

B(σ,m|t) = B(

[
σ1
σ2

]
,m|t)

From the definition of B, it is clear that

B(

[
σ1 + ω
σ2 + ω

]
,m|t) = B(

[
σ1
σ2

]
,m+ ω|t)

holds. Consider defining σ± := σ1 ± σ2. Then

B(

[
σ1
σ2

]
,m|t) = B(

[σ++σ−
2

σ+−σ−
2

]
,m|t) = B(

[ σ−
2

−σ−
2

]
,m+

σ+
2
|t)

which is a consequence of the previous identity.
I now define the tau function with the lattice Z2,

τ̃U(2)(

[
σ1
σ2

]
,

[
η1
η2

]
,m|t) =

∑
n1,n2∈Z

en1η1+n2η2t
1
2
(σ1+n1)2+

1
2
(σ2+n2)2B(

[
σ1 + n1

σ2 + n2

]
,m|t)

I want to compare this to

τU(2)(

[
σ1
σ2

]
,

[
η1
η2

]
,m|t) =

∑
n1,n2∈Z
n1+n2=0

en1η1+n2η2t
1
2
(σ1+n1)2+

1
2
(σ2+n2)2B(

[
σ1 + n1

σ2 + n2

]
,m|t)

which I found satisfies (2.48). What equation does τ̃U(2) satisfy? Let

n± := n1 ± n2, σ± := σ1 ± σ2, η± := η1 ± η2
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and use it to rewrite the definition of τ̃U(2),∑
n+,n−∈Z

e
1
2
n+η+t(

σ+
2

+
n+
2

)2e
1
2
n−η−t(

σ−
2

+
n−
2

)2B(

[ σ−+n−
2

+ σ++n+

2

−σ−+n−
2

+ σ++n+

2

]
,m|t)

and then use the property of the conformal block to write∑
n+,n−∈Z

e
1
2
n+η+t(

σ+
2

+
n+
2

)2e
1
2
n−η−t(

σ−
2

+
n−
2

)2B(

[ σ−+n−
2

−σ−+n−
2

]
,m+

σ+ + n+

2
|t)

Splitting the sum over n− into even and odd parts,

∑
n+∈Z

 ∑
n− even

+
∑

n− odd

 e
1
2
n+η+t(

σ+
2

+
n+
2

)2e
1
2
n−η−t(

σ−
2

+
n−
2

)2B(

[ σ−+n−
2

−σ−+n−
2

]
,m+

σ+ + n+

2
|t)

I can rewrite

τ̃U(2)(

[
σ1
σ2

]
,

[
η1
η2

]
,m|t) =

∑
n+∈Z

e
1
2
n+η+t(

σ+
2

+
n+
2

)2

(
τU(2)(

[ σ−
2

−σ−
2

]
,

[ η−
2

−η−
2

]
,m+

σ+ + n+

2
|t)

+e
1
2
η−τU(2)(

[ σ−
2
+ 1

2

−σ−
2
− 1

2

]
,

[ η−
2

−η−
2

]
,m+

σ+ + n+

2
|t)

)

Only in the special case where Nf = 0 does the term in the brackets decouple, so
that

τ̃U(2)(

[
σ1
σ2

]
,

[
η1
η2

]
|t) = tσ

2
+/4θ3

(
u =

i

4
(η+ + σ+ log t), q = t1/4

)
×
(
τ(
σ−
2
,
η−
2
|t) + e

1
2
η−τ(

σ−
2

+
1

2
,
η−
2
|t)
)

where τ(σ, η|t) is the SU(2) PIII3 tau function. Even in this case, however, it is
unclear which equation is satisfied by τ̃U(2). It seems, therefore, that τU(2) is a better
definition.

2.3.3.2 Other groups

Similar considerations let us calculate U(N), SO(2N), SO(2N + 1) with funda-
mental matter and, via the accidental isomorphism so(5) ∼= sp(2) (this is complex),
Sp(4) (the 4 is real and corresponds to the compex 2) with antisymmetric multiplets,
because the fundamental of SO(5) corresponds to the antisymmetric representation
of Sp(4) via the isomorphism.

Again, this we check for quite high order in many ranks.

2.3.3.3 The tau chain

Recall 2.48,

D2
log t[τ(σ,η|t)] = −τ(σ − (1, 0),η|t)τ(σ + (1, 0),η|t)
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Shifting σ 7→ σ + (1, 0) gives us

D2
log t[τ(σ + (1, 0),η|t)] = −τ(σ,η|t)τ(σ + (1, 1),η|t)

I can rewrite the last term in that equivalent way, since (2, 0)− (1, 1) ∈ Q. Notice
that in the pure case, τ(σ,η|t) ∝ τ(σ + (1, 1),η|t). Here, however,

τ(σ,η|t) 6∝ τ(σ + (1, 1),η|t)

since neither the 1-loop term, nor the instanton volumes have that symmetry. So
we obtain a chain of tau-functions which does not close.

The equation (2.48) should be compared with [234, Theorem 14] for PIII2 and
[236, eq. 0.17] in the general case10. It is not so simple to pass a verdict, label
them exactly the same. In the case of PIII2, in section 2.3.3.5 we do find that (2.48)
reduces to a bilinear Toda equation. In the general case, the derivatives themselves
are different, and aren’t given in terms of ∂log t but, for example, t(1− t)∂t for PVI.
Further, the Weyl group in these U(2) tau functions acts on the initial condition σ
only and not on the parameters of the equations – although in reductions to SU(2)
these get mixed with shifts of the masses, as seen in the next section.

This relationship should be explored more thoroughly.

2.3.3.4 Reducing to Nf = 0, PIII3
In the pure gauge theory case, from the Kiev Ansatz we see that for ω ∈ C

τ(σ + ω(1, 1),η|t) = tω
2
∑
n∈Q

eη·ntω(σ1+σ2)+
1
2
(σ+n)2B0(σ + n)Z(σ + n|t)

In other words,

τ ((σ,−σ) + ω(1, 1),η|t) = tω
2

τ ((σ,−σ),η|t)

Note that to reduce to SU(2), we need arguments equal but with opposite signs,
i.e. both σ1 = −σ2 and η1 = −η2. We cannot do this for (σ1 + 1, σ2), but we can
for (σ1 + 1/2, σ2 − 1/2), obviously, just by setting σ1 = −σ2.
Using the previous relation, we can reduce τ(σ + (1, 0),η|t) to SU(2), since

τ((σ,−σ) + (1, 0),η|t) = τ((σ,−σ) + (1/2,−1/2) + (1/2, 1/2),η|t)
= t1/4τ((σ + 1/2,−σ − 1/2),η|t)

An analogous calculation gives τ((σ,−σ)−(1, 0),η|t) = t1/4τ((σ−1/2,−σ+1/2),η|t).
Therefore, the equations (2.48) tell us

D2(τ0(σ, η|t)) = −t1/2τ0(σ − 1/2, η|t)τ0(σ + 1/2, η|t)

Using Z-periodicity of σ, we can write this as two equations

D2(τ0(σ, η|t)) = −t1/2τ1(σ, η|t)2

D2(τ1(σ, η|t)) = −t1/2τ0(σ, η|t)2

where we have defined
τ1(σ, η|t) := τ0(σ + 1/2, η|t)

This is the Painlevé III3 in tau form.
10I would like to thank M. Bershtein for pointing this out.
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2.3.3.5 Reducing to Nf = 1, PIII2
In the previous case, the main thing we did was close the chain, but now

τ ((σ,−σ) + ω(1, 1),η,m1|t) 6= tω
2

τ ((σ,−σ),η,m1|t)

so we cannot do that. However, a similar operation is possible. Consider the 1-loop
term shifted by ω(1, 1):

B0 (σ + ω(1, 1),m1) =
G(1 +m1 + σ1 + ω)G(1 +m1 + σ2 + ω)

G(1 + σ1 − σ2)G(1− σ1 + σ2)

=
G(1 + (m1 + ω) + σ1)G(1 + (m1 + ω) + σ2)

G(1 + σ1 − σ2)G(1− σ1 + σ2)

= B0(σ,m1 + ω)

Note that, at the level of instanton counting, we have the analogous result

Z(σ + ω(1, 1),m1|t) = Z(σ,m1 + ω|t)

which is easy to see, because the fundamental contribution is equal to a prodcut of
m1 + σ1,2 + ε1(i1,2 − 1)+ ε2(j1,2 − 1)) terms for each of the Young diagrams. We see
that we can ’transfer’ shifts in both vev’s to the mass. In particular, we get

τ((σ,−σ) + ω(1, 1),η,m1|t) = tω
2

τ((σ,−σ),η,m1 + ω|t)

Let us define τ0(σ, η,m1|t) := τ((σ,−σ), (η,−η),m1|t) as before. The equation
(2.48) becomes after calculations analogous to the pure gauge case

D2(τ0(σ, η,m1|t)) = −t1/2τ0(σ − 1/2, η,m1 − 1/2|t)τ0(σ + 1/2, η,m1 + 1/2|t)

Note that in this case, we cannot use periodicity to simplify further to a square.
Indeed, define

τ1(σ, η,m1|t) = τ0(σ − 1/2, η,m1 − 1/2|t)
τ2(σ, η,m1|t) = τ0(σ + 1/2, η,m1 + 1/2|t)

Then the equation (2.48) reduces to

D2(τ0) = −t1/2τ1τ2

Is this Painlevé III2? We can distinguish between two different tau forms of Painlevé
equations, in general:

1. The first form is what I will refer to as the full form. It uses a single, unshifted
tau function which we define starting from the equation written in terms of the
transcendent. It is essentially a change of variables of the Painlevé equation
For example, for PIII3 we can take the Hirota derivative of one of the equa-
tions:

D2(D2(τ0)) = tD2(τ 21 )

and then simplify further the RHS using the other equation:

D2(D2(τ0)) = tD2(τ 21 ) = 2tτ 21D
2(τ1) = −2t1/2D2(τ0)(−t1/2τ 20 )

which, although it can be simplified a bit, is already enough, since it’s written
in terms of a single tau function.
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2. The second form is what I will refer to as the Bäcklund form, because it uses
many tau functions defined on a lattice of shifts in parameter space.

Returning to our equation D2(τ0) = −t1/2τ1τ2, we see that we are dealing, at this
stage, with the Bäcklund form. We can use this equation to eliminate one of the
tau functions, say τ1. But then we need (at least) two more equations (since the
problem is nonlinear), to eliminate another tau function, say τ2, and to plug it all
into a single equation which is just in terms of τ0.

The Bäcklund form for PIII2 is given in [234, Theorem 15], but explicit param-
eter identifications have not been made there. It is also available for q−Painlevé in
[198] with an explicit dictionary. In that case we have

τ1τ2 − τ1τ2 = q−θ(q − 1)−1/2t1/2τ 20

τ1τ2 − τ1τ2 = q−1/4(q − 1)−1/2t1/2τ 20

D2
q(τ0) = −(q − 1)1/2t1/2τ1τ2

This is equation (5.3) in [198], but I have written τ0 instead of their τ3, and I have
written D2

q(f) := ff − f 2.
If I write q = eR and t 7→ R3t, and let R → 0, at first order these equations

reduce to

τ2∂log tτ1 − τ1∂log tτ2 = −t1/2τ 20
D2(τ0) = −t1/2τ1τ2

These are only 2 equations. I have checked that the first equation is true up to 4
instantons, but it is unclear where it comes from. Further, these equations are not
the same as the already mentioned [234, Theorem 15], as they do not involve the
mass/Painlevé parameter explicitly.

2.3.3.6 Reducing to Nf = 2, PIII1
For two flavors, completely analogous calculations yield

τ((σ,−σ) + ω(1, 1),η,m1,m2|t) = tω
2

τ((σ,−σ),η,m1 + ω,m2 + ω|t)

Using that, the equation (2.48), which is true for all flavors, when specialized to
Nf = 2, becomes

D2(τ0(σ, η,m1,m2|t)) = −t1/2τ0(σ−
1

2
, η,m1−

1

2
,m2−

1

2
|t)τ0(σ+

1

2
, η,m1+

1

2
,m2+

1

2
|t)

In [198], there are 4 tau functions which are considered. They all have shifts:

τ1 = τ0(σ, η,m1 −
1

2
,m2|t), τ2 = τ0(σ, η,m1 +

1

2
,m2|t)

τ3 = τ0(σ − 1

2
, η,m1,m2 −

1

2
|t), τ4 = τ0(σ +

1

2
, η,m1,m2 +

1

2
|t)

In the last equation, we can therefore shift m1 7→ m1 ± 1
2

and get two equations,

D2(τ1) = −t1/2τ0(σ − 1

2
, η,m1 − 1,m2 −

1

2
|t)τ4

D2(τ2) = −t1/2τ0(σ +
1

2
, η,m1 + 1,m2 +

1

2
|t)τ3
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Shifting instead, together, σ 7→ σ ± 1
2
, m2 7→ 1

2
yields

D2(τ3) = −t1/2τ0(σ − 1, η,m1 −
1

2
,m2 − 1|t)τ2

D2(τ4) = −t1/2τ0(σ + 1, η,m1 +
1

2
,m2 + 1|t)τ1

So in this case, all of the equations are qualitatively different than the ones in [198].

2.3.4 Discussion
The Toda-like equations for pure d = 4 N = 2 gauge theories with arbitrary groups
can be generalised to d = 5 N = 1 theories on a circle by a straightforward lift
of the ordinary Hirota derivative to a q-analogue. Due to the different behaviour
of the q-version, some more complicated manipulations may become unavailable,
for instance those involving the ordinary Y n operators. It would be interesting,
however, to obtain these equations using quiver mutations as in [26, 28, 40].

The link to blowup equations needs more work. In [254], (−2)-blowup relations
were used – perhaps generalising this would work for g = An theories with n > 1.

Finally, the G = U(2) super Yang-Mills with an arbitrary number Nf of fun-
damental multiplets satisfying the same equation as the Nf = 0 case represents a
mystery. From the SW/integrable systems 1.4 point of view, this should correspond
to a deautonomised XXX spin chain. The fact that we cannot close it perhaps hints
to some quasiperiodic boundary conditions. It would also be interesting if blowup
relations can help derive this.
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Chapter 3

Magical matrix models from three
dimensions

3.1 Extending the ABJM/Painleve III3 correspon-
dence

In the introduction we have seen that ABJM computes the q−Painlevé III3 tau
function via the TS/ST/Tau correspondence. It is natural to ask for an extension
of this correspondence to other q-difference equations.

In the first part, I present my work with my collaborators Naotaka Kubo and
Tomoki Nosaka and my advisors Alessandro Tanzini and Giulio Bonelli [41]. We
used recent progress on spectral curves to realise the tau function of q-PVI as a
matrix model.

In the second part, I present my work with Tomoki Nosaka. There we computed
the grand partition function of the D-type quiver exactly in terms of a Fredholm
Pfaffian, for a simpler, degenerate case D3, as well as for D4, and we gave a rank-
deformation which works. Both the exact computation and the rank-deformation
are novel. We had hoped to use the ADE classification of superconformal Chern-
Simons quivers to explore what kind of relations are satisfied by a quiver of D-type.
With the data we have available, however, we were unable to find any bilinear
relations. There are, however, other directions to go.

3.2 q−PVI matrix model
This section is based on joint work with Naotaka Kubo and Tomoki Nosaka [41].
We studied in detail the case of q-Painlevé VI, corresponding to five-dimensional
N = 1 SU (2) gauge theory with four fundamental hypermultiplets Nf = 4. Via
geometric engineering this corresponds to topological strings on the local D5 del
Pezzo Calabi-Yau threefold.

This came about through a series of intensive studies of the four-nodes theory
U (N)k × U (N)0 × U (N)−k × U (N)0 [192, 209, 210] which describes N M2-branes
placed on (C2/Z2 × C2/Z2) /Zk orbifold [146]. There it was found that the large
µ = log κ expansion of the modified grand potential J (µ) (related to the grand
partition function as Ξ (κ) =

∑
n e

J(µ+2πin)) [183, 184, 208, 212] of this theory is
consistent with the refined topological string free energy on local D5 del Pezzo
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geometry at large radius. Later this result was generalized to the case of different
ranks U (N1)k ×U (N2)0 ×U (N3)−k ×U (N4)0, finding that the three extra degrees
of freedom of the rank differences realize a three dimensional sublattice of quantised
values in the full Kähler moduli space of local D5. This enables us to show that the
five dimensional moduli space can be realized by turning on the Fayet-Iliopoulos
parameters of the Chern-Simons matter theory. As it is the case for the TS/ST/tau
correspondence between the ABJM theory and q-Painlevé III3, by using the exact
values of the partition function of U (N1)k × U (N2)0 × U (N3)−k × U (N4)0 theory
at fixed moduli we can check the τ -form of the q-Painlevé VI equation in the small
κ expansion.

In section 3.2.1, we first recall some background material and fix our notations.
In section 3.2.2, performed a detailed analysis of the matrix model of the quiver
superconformal Chern-Simons theory and the related quantum curve. In section
3.2.4, we give a thorough check that the grand partition function of the above theory
satisfies q-Painlevé equations, thus providing a conjectural Fredholm determinant
representation for the corresponding τ -functions. In section 3.2.5 we describe the
coalescence limits from the viewpoint of the analysis of matrix models and quantum
curves, providing matrix model realizations of the q-Painlevé τ -functions. In section
3.2.6 we discuss the coalescence limit from the viewpoint of q-difference equations by
considering both the perturbative gauge theory realisation of the τ -function and the
magnetic matrix model one. Finally, in section 3.2.8 we discuss some open questions
for further investigation. We collect in the appendices some relevant definitions and
details of some computations.

3.2.1 Five dimensional gauge theory, q-Painlevé and TS/ST
correspondence

3.2.1.1 Five dimensional gauge theory and q-deformed PVI equations
in bilinear form

As mentioned in the introductory section 1.7, the relation between Painlevé VI
differential equation and two dimensional Liouville CFT with c = 1 was first noticed
in [100]. This connection arises from the formulation of Painlevé VI equation as
the isomonodromic deformation problem of an auxiliary sl(2,C) linear system on
the Riemann sphere with four regular punctures. This linear system is solved in
terms of the degenerate four point conformal block of c = 1 Liouville CFT [147].
By the AGT correspondence the isomonodromic τ function is given as the Fourier
transform of the full Nekrasov partition function, the Nekrasov-Okounkov partition
function introduced in [225]. In this sense the Painlevé equation can be viewed as
a non-trivial identity among Nekrasov functions.

In the Introduction, there was some mention of d = 5 N = 1 super Yang-Mills
on the d = 5 Omega-background, which has a circle fibration and reduces to R4×S1

in the Seiberg-Witten limit. More detail was given in the section on Painlevé-like
equations.

By using the five dimensional uplift of AGT correspondence [11, 13] q-Virasoro
four point conformal block can be computed in terms of the five dimensional Nekrasov-
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Okounkov [225] (NO) partition function, as:

τ (θ0, θ1, θt, θ∞; s, σ, t) =
∑
n∈Z

snt(σ+n)2−θ2t−θ20C (θ0, θ1, θt, θ∞;σ + n)Z (θ0, θ1, θt, θ∞;σ + n, t) ,

C (θ0, θ1, θt, θ∞;σ) =

∏
ϵ,ϵ′=±Gq (1 + εθ∞ − θ1 + ε′σ)Gq (1 + εσ − θt + ε′θ0)

Gq (1 + 2σ)Gq (1− 2σ)
,

Z (θ0, θ1, θt, θ∞;σ, t) =
∑
λ+,λ−

t|λ+|+|λ−|

∏
ϵ,ϵ′=±Nϕ,λϵ′

(
qϵθ∞−θ1−ϵ′σ

)
Nλϵ,ϕ

(
qϵσ−θt−ϵ′θ0

)∏
ϵ,ϵ′ Nλϵ,λϵ′

(q(ϵ−ϵ′)σ)
.

(3.1)

Here C,Z are respectively the one-loop determinant and the instanton partition
function of the d = 5 N = 1 SU(2) Yang-Mills with Nf = 4, whose Seiberg-Witten
curve reads

(w −m′
1) (w −m′

2) t
2

+

[
−

((
m′

1m
′
2

a1a2

) 1
2

+ q′
(
a1a2
m′

3m
′
4

) 1
2

)
w2 + Ew −m′

1m
′
2

((
a1a2
m′

1m
′
2

) 1
2

+ q′
(
m′

3m
′
4

a1a2

) 1
2

)]
t

+ q′
(
m′

1m
′
2

m′
3m

′
4

) 1
2

(w −m′
3) (w −m′

4) = 0, (3.2)

where a1a2 = 1 and

qθ0 =

(
m′

1

m′
3

) 1
2

, qθ1 = (m′
2m

′
4)

1
2 , qθt = (m′

1m
′
3)

− 1
2 ,

qθ∞ =

(
m′

4

m′
2

) 1
2

, t = q′
(
m′

2m
′
4

m′
1m

′
3

) 1
2

. (3.3)

The Omega-background is chosen to be self-dual ε2 = −ε1, and q = e−βϵ1 , where
β is the radius of S1 on which the five dimensional theory is compactified. This
parameter identification can be obtained by comparing the results in [17] and [157].
The q-deformed Painlevé VI equation is defined through the q-difference version of
the analogue isomonodromic deformation problem [158]. This suggests a connection
between q-PVI system and q-Virasoro algebra – it was shown in [157] that the
associated linear system can be solved in terms of q-Virasoro five point conformal
blocks. Note that solving q-PVI equations does not fix uniquely the choice C in
(3.1), as it was also the case for q-PIII3 [31, 46]. We address this point further
in section 3.2.8. This τ (θ0, θ1, θt, θ∞; s, σ, t) is a q-uplift of the isomonodromic τ
function (1.10) of the Painlevé VI differential equation from the Introduction. The
relation between the τ -function and the q-Painlevé transcendents is not obvious.
Nevertheless, building on results in the differential case one can define them via
some identities satisfied by the q-uplifted τ -function (3.1). Specifically, for q-PVI
we define y, z as

y = q−2θ1−1 · tτ3τ4
τ1τ2

, z = −qθt−θ1−1 · tτ 7τ8
τ 5τ6

,
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where τi, τ i, τ̄i are defined from a single τ -function τ (θ0, θ1, θt, θ∞; s, σ, t) as

τ1 (t) = τ

(
θ0, θ1, θt, θ∞ +

1

2
; s, σ, t

)
, τ2 (t) = τ

(
θ0, θ1, θt, θ∞ − 1

2
; s, σ, t

)
,

τ3 (t) = τ

(
θ0 +

1

2
, θ1, θt, θ∞; s, σ +

1

2
, t

)
, τ4 (t) = τ

(
θ0 −

1

2
, θ1, θt, θ∞; s, σ − 1

2
, t

)
,

τ5 (t) = τ

(
θ0, θ1 −

1

2
, θt, θ∞; s, σ, t

)
, τ6 (t) = τ

(
θ0, θ1 +

1

2
, θt, θ∞; s, σ, t

)
,

τ7 (t) = τ

(
θ0, θ1, θt −

1

2
, θ∞; s, σ +

1

2
, t

)
, τ8 (t) = τ

(
θ0, θ1, θt +

1

2
, θ∞; s, σ − 1

2
, t

)
,

τ i (t) = τi
(
q−1t

)
, τ̄i (t) = τi (qt) . (3.4)

The q-PVI equations follow from the bilinear identities satisfied by the five dimen-
sional Nekrasov-Okounkov partition function [157]:

τ1τ2 − q−2θ1 · tτ3τ4 −
(
1− q−2θ1 · t

)
τ5τ6 = 0,

τ1τ2 − tτ3τ4 −
(
1− q−2θt · t

)
τ 5τ̄6 = 0,

τ1τ2 − τ3τ4 +
(
1− q−2θ1 · t

)
q2θtτ 7τ̄8 = 0,

τ1τ2 − q2θtτ3τ4 +
(
1− q−2θt · t

)
q2θtτ7τ8 = 0,

τ 5τ6 + q−θ1−θ∞+θt− 1
2 · tτ 7τ8 − τ 1τ2 = 0,

τ 5τ6 + q−θ1+θ∞+θt− 1
2 · tτ 7τ8 − τ1τ 2 = 0,

τ 5τ6 + qθ0+2θtτ 7τ8 − qθtτ 3τ4 = 0,

τ 5τ6 + q−θ0+2θtτ 7τ8 − qθtτ3τ 4 = 0. (3.5)

These eight equations provide the τ -form of q-Painlevé VI system.

3.2.1.2 TS/ST contribution

As detailed in the introductory section on TS/ST, it has been conjectured in [117]
that the operator Ô−1, the inverse of the the operator Ô =

∑
(m,n)6=(0,0) am,ne

mx̂+np̂,
with [x̂, p̂] = iℏ, which is quantum version of the mirror curve WX (ex, ep) =∑

m,n am,ne
mx+np = 0 in C∗×C∗ to the topological string on a local toric Calabi-Yau

threefold X, where WX is the Newton polynomial of the CY3 X and the sum over
m,n runs over a finite set in Z2 determined by the toric fun of X, known as the
Newton polygon of the curve [19, 60, 143, 169], is trace class, that is trÔ−n are
finite for n = 1, 2, · · · . This has been checked in some relevant cases in [167, 194]
and our analysis in this work extends the verification to other cases. In particular,
the following Fredholm operator admits a well defined spectral determinant:

Ξ(κ) = det
(
1 + κÔ−1

)
. (3.6)

This spectral determinant is conjectured to provide a non-perturbative completion
of the free energy of the topological string on X. As mentioned in section 1.10.3,
the perturbative expansion of the topological string free energy displays infinitely
many poles, while the spectral determinant (3.6) is finite for an arbitrary value of
the topological string coupling ℏ. Interestingly, from the viewpoint of the topolog-
ical string free energy the right analytic properties of the spectral determinant are
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achieved by cancelling these poles by a proper combination of refined and unrefined
topological string amplitudes [133].

When X is the local D5 del Pezzo, one obtains by geometric engineering d = 5
SU(2) super Yang-Mills gauge group minimally coupled to Nf = 4 fundamental
hypermultiplets. The quantum mirror curve is given by

Ô = q

(
m1m2

m3m4

) 1
2

e−x̂+p̂ −

((
m1m2

a1a2

) 1
2

+ q

(
a1a2
m3m4

) 1
2

)
ep̂ + ex̂+p̂

− q

(
m1m2

m3m4

) 1
2

(m3 +m4) e
−x̂ + E − (m1 +m2) e

x̂

+ q (m1m2m3m4)
1
2 e−x̂−p̂ −m1m2

((
a1a2
m1m2

) 1
2

+ q

(
m3m4

a1a2

) 1
2

)
e−p̂

+m1m2e
x̂−p̂. (3.7)

Here mi, q are related to m′
i, q

′ in (3.2) through the following rescaling [44, 167]:

logm′
i =

2π

ℏ
logmi, log q′ =

2π

ℏ
log q. (3.8)

The Planck constant is related to the Omega deformation parameter q = e−βϵ1 as

q = e
4π2i
ℏ .

Together with (3.3), we obtain the following relation between Painlevé parameters
(θ0, θ1, θt, θ∞, t) and the coefficients of the quantum mirror curve (m1,m2,m3,m4, q)

θ0 =
1

4πi
log

m1

m3

, θ1 =
1

4πi
log (m2m4) , θt =

1

4πi
log

1

m1m3

,

θ∞ =
1

4πi
log

m4

m2

,
log t

log q
=

1

4πi
log

(
q2m2m4

m1m3

)
.

The Coulomb vev σ is related to κ. Let us notice that in the correspondence the
spectral determinant computes the s = 1 NO partition function.

The TS/ST correspondence suggests that the spectral determinant Ξ(κ) (3.6),
with Ô given as (3.7), is equal to τ(θ0, θ1, θt, θ∞; 1, σ, t) (3.1) up to a κ-independent
overall factor and upon an appropriate relation between κ and σ. Combining this
with the five-dimensional uplift of the Painlevé/gauge theory correspondence [46]
it follows that Ξ(κ) should solve the q-Painlevé equations (3.4)-(3.5). Notice that
while the Nekrasov-Okounkov partition function is written as a small t expansion,
the spectral determinant is manifestly given as a small κ expansion, and hence
solves q-Painlevé equations in a different regime. The difficult part of this program
is to invert the operator Ô for a generic set of the coefficients m1,m2,m3,m4, q.
It is here that the three dimensional Chern-Simons matter theory as described in
1.10.2 enters the story.

3.2.2 Chern-Simons matter matrix model and quantum curve
In [183, 184, 208, 212] it was found that N = 4 U (N1)k × U (N2)0 × U (N3)−k ×
U (N4)0 superconformal Chern-Simons (CS) matter theory is related to the D5 del
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Pezzo geometry (3.2). More precisely, it was conjectured that the partition func-
tion of the CS matter theory computes the fermionic spectral traces of the inverse
quantum mirror curve of D5 del Pezzo geometry (3.7),

Zk(N1, N2, N3, N4) =
Zk(N = 0)

N !

∫
dNx

(2π)N

N

det
i,j

〈
xi

∣∣∣Ô−1
∣∣∣xj〉 ,

where we parametrize the four ranks as N1 = N +M1, N2 = N +M , N3 = N +M2,
N4 = N , and assume N,M1,M2,M ≥ 0. This is represented in Fig.3.1 where we
also describe the IIB D-brane set-up. Therefore the grand partition function of this
theory gives, after resummation, the spectral determinant (3.6):

∞∑
N=0

κN
Zk(N1, N2, N3, N4)

Zk(N = 0)
= det

(
1 + κÔ−1

)
. (3.9)

Here Ô is the quantum mirror curve (3.7) with ℏ = 2πk, where the three rank
differences Ni − N correspond to a three dimensional subspace of the five mass
parameters of the curve, while the overall rank N is dual to the true∗ modulus.
In order to turn on the remaining mass parameters we further introduce Fayet-
Iliopoulos (FI) terms for each gauge node in the following way†

U (N1)k × U (N2)0 × U (N3)−k × U (N4)0
→ U (N1)k,ζ1 × U (N2)0,−ζ1

× U (N3)−k,ζ2
× U (N4)0,−ζ2

. (3.10)

The partition function of the resulting gauge theory on S3 is reduced by supersym-
metric localisation to the following integral [164]

Zk (N ;M1,M2,M, ζ1, ζ2)

=
i−

N2
1
2

+
N2
3
2

N1!N2!N3!N4!

∫ N1∏
i=1

dλ
(1)
i

2π

N2∏
i=1

dλ
(2)
i

2π

N3∏
i=1

dλ
(3)
i

2π

N4∏
i=1

dλ
(4)
i

2π

× e
ik
4π

∑N1
i=1

(
λ
(1)
i

)2
− ik

4π

∑N3
i=1

(
λ
(3)
i

)2

e
−iζ1

(∑N1
i=1 λ

(1)
i −

∑N2
i=1 λ

(2)
i

)
−iζ2

(∑N3
i=1 λ

(3)
i −

∑N4
i=1 λ

(4)
i

)

×
4∏

a=1

∏Na

i<j

(
2 sinh

λ
(a)
i −λ

(a)
j

2

)2

∏Na

i=1

∏Na+1

j=1 2 cosh
λ
(a)
i −λ

(a+1)
j

2

, (3.11)

where N5 = N1 and λ
(5)
j = λ

(1)
j .

3.2.3 Fermi gas formalism
We address the study of the matrix model (3.11) in the Fermi gas formalism. Our
derivation extends the one in [183] to the present case with rank deformations

∗Here we follow the standard terminology already used in [46] (see section 2.1) distinguishing
the complex moduli of the mirror curve into a "true" modulus which we call κ and mass parameters.

†We could consider more general choices of FI parameters and also introduce hypermultiplet’s
masses. However, such extra deformations either do not preserve the Newton polygon of the
quantum curve (3.2) or do not affect the quantum curve at all.
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U(N +M2)�k,⇣2
<latexit sha1_base64="l3h4mDNtC+DWIaBgC7jnvrOpsI0=">AAACBXicbVDJSgNBEO2JW4xb1KMeBoMQUcPMKOgx6MWLEsEskIShp1NJmvQsdNeIccjFi7/ixYMiXv0Hb/6NneWgxgcFj/eqqKrnRYIrtKwvIzUzOze/kF7MLC2vrK5l1zcqKowlgzILRShrHlUgeABl5CigFkmgvieg6vXOh371FqTiYXCD/QiaPu0EvM0ZRS252e0Gwh0m5UH+av/Sdfbc5LB30LgHpK4zcLM5q2CNYE4Te0JyZIKSm/1stEIW+xAgE1Spum1F2EyoRM4EDDKNWEFEWY92oK5pQH1QzWT0xcDc1UrLbIdSV4DmSP05kVBfqb7v6U6fYlf99Ybif149xvZpM+FBFCMEbLyoHQsTQ3MYidniEhiKviaUSa5vNVmXSspQB5fRIdh/X54mFadgHxWc6+Nc8WwSR5pskR2SJzY5IUVyQUqkTBh5IE/khbwaj8az8Wa8j1tTxmRmk/yC8fEN+9GXmQ==</latexit>

U(N)0,�⇣2
<latexit sha1_base64="YB7Vvx+MqEfMxvLACyP+110vJ4I=">AAACAXicbVDLSgNBEJyNrxhfUS+Cl8UgRNCwGwU9Br14kgjmAdmwzE46ccjsg5leMS7x4q948aCIV//Cm3/jJNmDJhY0FFXddHd5keAKLevbyMzNLywuZZdzK6tr6xv5za26CmPJoMZCEcqmRxUIHkANOQpoRhKo7wloeP2Lkd+4A6l4GNzgIIK2T3sB73JGUUtufsdBuMekNixeHbiJdXjkPABStzx08wWrZI1hzhI7JQWSourmv5xOyGIfAmSCKtWyrQjbCZXImYBhzokVRJT1aQ9amgbUB9VOxh8MzX2tdMxuKHUFaI7V3xMJ9ZUa+J7u9CneqmlvJP7ntWLsnrUTHkQxQsAmi7qxMDE0R3GYHS6BoRhoQpnk+laT3VJJGerQcjoEe/rlWVIvl+zjUvn6pFA5T+PIkl2yR4rEJqekQi5JldQII4/kmbySN+PJeDHejY9Ja8ZIZ7bJHxifP1o6li0=</latexit>

U(N +M1)k,⇣1
<latexit sha1_base64="7Zt9spjZ5SlDjqtHsgYPc47qlfI=">AAACBHicbVDJSgNBEO2JW4xb1GMug0GIKGEmCnoMevGiRDALJGHo6VSSJj0L3TViHObgxV/x4kERr36EN//GznLQxAcFj/eqqKrnhoIrtKxvI7WwuLS8kl7NrK1vbG5lt3dqKogkgyoLRCAbLlUguA9V5CigEUqgniug7g4uRn79DqTigX+LwxDaHu35vMsZRS052VwL4R7jalK4Prxy7AMnHhy1HgCpYydONm8VrTHMeWJPSZ5MUXGyX61OwCIPfGSCKtW0rRDbMZXImYAk04oUhJQNaA+amvrUA9WOx08k5r5WOmY3kLp8NMfq74mYekoNPVd3ehT7atYbif95zQi7Z+2Y+2GE4LPJom4kTAzMUSJmh0tgKIaaUCa5vtVkfSopQ51bRodgz748T2qlon1cLN2c5Mvn0zjSJEf2SIHY5JSUySWpkCph5JE8k1fyZjwZL8a78TFpTRnTmV3yB8bnD4eel2A=</latexit>

Figure 3.1: Left: Type IIB brane setup of the three dimensional superconformal
Chern-Simons matter theory (3.10), where θ(k) in the row of (1, k)5-brane stands
for the direction with an angle arctan(k) from the first axis in each of the pairs;
Right: The quiver diagram of the three dimensional Chern-Simons matter theory
realized by the brane setup.

and generic Fayet-Iliopoulos parameters. In the following we assume that the FI
parameters ζi are real, we use the parametrization

N1 = N +M1, N2 = N +M, N3 = N +M2, N4 = N,

and assume that N , M1, M2 and M are non-negative integers as in the main text.
We also assume M1 ≥M and M2 ≥M .

The integrand of the matrix model, after shifting all of the integration variables
as µ→ µ

k
, can be divided into two parts as

Zk (N ;M1,M2,M, ζ1, ζ2) =
1

N2!N4!

∫ N4∏
n=1

dµn

ℏ

N2∏
n=1

dνn
ℏ
YN4,N1,N2 (0, ζ1;µ, ν) (YN4,N3,N2 (ζ2, 0;µ, ν))

∗ ,

(3.12)
where

YN4,Ñ ,N2
(ζ, ζ ′;µ, ν)

=
i−

Ñ2

2

Ñ !

∫ Ñ∏
n=1

dλn
ℏ
e

i
4πk

∑Ñ
n=1 λ

2
ne

− iζ
k

(∑N4
n=1 µn−

∑Ñ
n=1 λn

)
− iζ′

k

(∑Ñ
n=1 λn−

∑N2
n=1 νn

)

×
∏N4

m<m′ 2 sinh
µm−µm′

2k

∏Ñ
n<n′ 2 sinh

λn−λn′
2k∏N4

m=1

∏Ñ
n=1 2 cosh

µm−λn

2k

∏Ñ
m<m′ 2 sinh

λm−λm′
2k

∏N2

n<n′ 2 sinh
νn−νn′

2k∏Ñ
m=1

∏N2

n=1 2 cosh
λm−νn

2k

.

(3.13)

We first focus on YN4,Ñ ,N2
and rewrite it in the operator formalism. By combining
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the Cauchy determinant formula and the Vandermonde determinant formula [200]

∏K
m<m′ 2 sinh

µm−µm′
2k

∏K+L
n<n′ 2 sinh

λn−λn′
2k∏K

m=1

∏K+L
n=1 2 cosh µm−λn

2k

= det


[
(−1)L e

L
2k

(µm−λn)

2 cosh µm−λn
2k

]K×(K+L)

m,n[
e

1
k(

L+1
2

−r)λn

]L×(K+L)

r,n

 ,

∏K+L
m<m′ 2 sinh

λm−λm′
2k

∏K
n<n′ 2 sinh

νn−νn′
2k∏K+L

m=1

∏K
n=1 2 cosh

λm−νn
2k

= det

( [
(−1)L e−

L
2k

(λm−νn)

2 cosh λm−νn
2k

](K+L)×K

m,n

[
e

1
k(

L+1
2

−r)λm

](K+L)×L

m,r

)
, (3.14)

we can rewrite the third line of (3.13) as the determinant of the product of two
matrices. The notation for the operator formalism is in (3.56). We will make use
of the following identities

(−1)L
e

L
2k

(µ−λ)

2 cosh µ−λ
2k

= (−1)L
∫
R

dp

2π

e
i
ℏ (p−iπL)(µ−λ)

2 cosh p
2

= k

〈
µ

∣∣∣∣∣ 1

2 cosh p̂−iπL
2

∣∣∣∣∣λ
〉

+

bL+1
2 c∑
r

(−1)L+r+1 e
1
k(

L+1
2

−r)(µ−λ),

e
1
k
σλ =

√
k 〈〈2πiσ |λ〉 , (3.15)

where in the second line, as we shifted the integration contour to R + iπL, one
obtains a summation over the resulting residues. Fortunately, the contribution to
the determinant of the latter vanishes being a linear combination of rows. Indeed
it is evident from (3.14) that the sum of the residues is a linear combination of
the lower (or right) elements. To write all of factors in the operator formalism, we
multiply the first matrix by a Fresnel factor. We also include the first FI factor,
depending on ζ, in the first matrix and the second FI factor, depending on ζ ′, in
the second matrix. After performing the similarity transformations

e−
2πiζ
ℏ x̂f (p̂) e

2πiζ
ℏ x̂ = f (p̂+ 2πζ) , 〈〈p | e

2πiζ
ℏ x̂ = 〈〈p− 2πζ | ,

we obtain

YN4,Ñ ,N2
(ζ, ζ ′;µ, ν)

=
i−

Ñ2

2

Ñ !

∫ Ñ∏
n=1

dλn
ℏ

det


[
k

〈
µm

∣∣∣∣ 1

2 cosh p̂+2πζ−iπM̃
2

e
i
2ℏ x̂

2

∣∣∣∣λn〉]N4×Ñ

m,n[√
k
〈〈
t−ζ,M̃,r

∣∣∣ e i
2ℏ x̂

2
∣∣∣λn〉]M̃×Ñ

r,n


× det

( [
k

〈
λm

∣∣∣∣ 1

2 cosh
p̂+2πζ′+iπ(Ñ−N2)

2

∣∣∣∣ νn〉]Ñ
×N2

m,n

[√
k
〈
λm
∣∣−tζ′,Ñ−N2,r

〉〉]Ñ×(Ñ−N2)

m,r

)
,

where M̃ = N4 − Ñ and tζ,n,r is defined in (3.54).
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We now return to the matrix model (3.12). Upon the similarity transformation∫ N4∏
n=1

dµn |µn〉 〈µn| =
∫ N4∏

n=1

dµne
i
2ℏ x̂

2

e
i
2ℏ p̂

2 |µn〉 〈µn| e−
i
2ℏ p̂

2

e−
i
2ℏ x̂

2

,

∫ Ñ∏
n=1

dλn |λn〉 〈λn| =
∫ Ñ∏

n=1

dλne
i
2ℏ p̂

2 |λn〉 〈λn| e−
i
2ℏ p̂

2

,

∫ N2∏
n=1

dνn |νn〉 〈νn| =
∫ N2∏

n=1

dνne
i
2ℏ p̂

2 |νn〉 〈νn| e−
i
2ℏ p̂

2

,

and by using the formulae

e−
i
2ℏ p̂

2

e−
i
2ℏ x̂

2

f (p̂) e
i
2ℏ x̂

2

e
i
2ℏ p̂

2

= f (q̂) , 〈〈p | e
i
2ℏ x̂

2

e
i
2ℏ p̂

2

=
√
ie−

i
2ℏp

2 〈p| ,

we find that the matrix models can be written as

Zk (N ;M1,M2,M, ζ1, ζ2)

=
1

N2!N4!
eiΘk(M1,M2,M,ζ1,ζ2)

∫ N4∏
n=1

dµn

ℏ

N2∏
n=1

dνn
ℏ
ỸN4,N1,N2 (0, ζ1;µ, ν)

(
ỸN4,N3,N2 (ζ2, 0;µ, ν)

)∗
,

(3.16)

where

ỸN4,Ñ ,N2
(ζ, ζ ′;µ, ν)

=
i−

Ñ2

2
+ M̃

2

Ñ !

∫ N∏
n=1

dλn
ℏ

det


[
k

〈
µm

∣∣∣∣ 1

2 cosh x̂+2πζ−iπM̃
2

∣∣∣∣λn〉]N4×Ñ

m,n[√
k
〈
t−ζ,M̃,r

∣∣λn〉]M̃×Ñ

r,n


× det

( [
k

〈
λm

∣∣∣∣ 1

2 cosh
p̂+2πζ′+iπ(Ñ−N2)

2

∣∣∣∣ νn〉]Ñ
×N2

m,n

[√
k
〈
λm
∣∣−tζ′,Ñ−N2,r

〉〉]Ñ×(Ñ−N2)

m,r

)
,

and

Θk (M1,M2,M, ζ1, ζ2) = θk (M1, 0) + θk (M1 −M, ζ1)− θk (M2, ζ2)− θk (M2 −M, 0) ,

θk (M, ζ) =
π

k

[
1

12

(
M3 −M

)
−Mζ2

]
.

ỸN4,Ñ ,N2
can be computed as follows. Since the second determinant is an anti-

symmetric function of λm, we can simplify the first determinant by using

1

N !

∫
dNλ det

(
[gm (λn)]

N×N
m,n

)
f (λ1, λ2, . . . , λN) =

∫
dNλ

N∏
n

gn (λn) f (λ1, λ2, . . . , λN) ,

which holds for any anti-symmetric function f (λ). We decompose the other deter-
minant by using (3.15) and (3.14) backwards. Now we can perform the integration
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by using the delta functions coming form the inner products of the position opera-
tors. After a short computation, we obtain

ỸN4,Ñ ,N2
(ζ, ζ ′;µ, ν) =i−

Ñ2

2
+ M̃2

2 e
2πiζζ′M̃

k e−
iζ′
k (

∑N4
n=1 µn−

∑N2
n=1 νn)Z

(CS)
k

(
M̃
)

×
N4∏
n=1

∏M̃
r=1 2 sinh

µn+tζ,M̃,r

2k

2 cosh µn+2πζ−iπM̃
2

N2∏
n=1

1∏M̃
r=1 2 cosh

νn+tζ,M̃,r

2k

×
∏N4

m<m′ 2 sinh
µm−µm′

2k

∏N2

n<n′ 2 sinh
νn−νn′

2k∏N4

m=1

∏N2

n=1 2 cosh
µm−νn

2k

,

where

Z
(CS)
k (L) =

1

k
L
2

L∏
j<j′

2 sin
π

k
(j′ − j) ,

is the partition function of U(L)k pure Chern-Simons theory. We again use the
determinant formula (3.14) and the operator formula (3.15) for the factor at the
third line, and we include the FI factors and the factors in the second line into the
matrix. As a result, we obtain

ỸN4,Ñ ,N2
(ζ, ζ ′;µ, ν) = i−

N2
4
2 e

2πiζζ′M̃
k Z

(CS)
k

(
M̃
)

(3.17)

× det


[
k

〈
µm

∣∣∣∣SM̃ (x̂+ 2πζ) 1

2 cosh p̂+2πζ′−iπM
2

CM̃ (x̂+ 2πζ)

∣∣∣∣ νn〉]N4×N2

m,n[√
k 〈〈t−ζ′,M,r |CM̃ (x̂+ 2πζ) | νn 〉

]M×N2

r,n

 ,

where

SL (x) = iL
∏L

r=1 2 sinh
x−2πi(L+1

2
−r)

2k

2 cosh x+iπL
2

, CL (x) =
1∏L

r=1 2 cosh
x−2πi(L+1

2
−r)

2k

.(3.18)

By using the recursive formula for the quantum dilogarithm functions (.84),
(3.18) can be written in terms of the quantum dilogarithm as

SL (x) = e
k−L
2k

xΦb

(
x

2πb
− iL

2b
+ i

2
b
)

Φb

(
x

2πb
+ iL

2b
− i

2
b
) , CL (x) = e

L
2k

xΦb

(
x

2πb
+ iL

2b

)
Φb

(
x

2πb
− iL

2b

) .
By substituting (3.17) into (3.16), we finally arrive at

Zk (N ;M1,M2,M, ζ1, ζ2)

=
eiΘk(M1,M2,M,ζ1,ζ2)Z

(CS)
k (M1)Z

(CS)
k (M2)

N ! (N +M)!

∫ N∏
n=1

dµn

2π

N+M∏
n=1

dνn
2π

× det


[〈
µm

∣∣∣ D̂VI
1

∣∣∣ νn〉]N×(N+M)

m,n[〈〈
t0,M,r

∣∣∣ d̂VI
1

∣∣∣ νn〉]M×(N+M)

r,n


× det

( [〈
νm

∣∣∣ D̂VI
2

∣∣∣µn

〉](N+M)×N

m,n

[〈
νm

∣∣∣ d̂VI
2

∣∣∣−t0,M,r

〉〉](N+M)×M

m,r

)
,(3.19)
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where

D̂VI
1 = e−

iζ1
k

x̂SM1 (x̂)
1

2 cosh p̂−iπM
2

e
iζ1
k

x̂CM1 (x̂) ,

d̂VI
1 = e

iζ1
k

x̂CM1 (x̂) ,

D̂VI
2 = CM2 (x̂+ 2πζ2)

1

2 cosh p̂+πiM
2

SM2 (x̂+ 2πζ2) ,

d̂VI
2 = CM2 (x̂+ 2πζ2) .

Let us perform a short digression on the formulas which can be used to rephrase
our final result (3.19) in a more concise way, though we do not use them in the
main text. Note that by using the formula

1

N !

∫
dNν det

(
[fm (νn)]

N×N
m,n

)
det
(
[gn (νm)]

N×N
m,n

)
= det

([∫
dνfm (ν) gn (ν)

]N×N

m,n

)
,

(3.20)
the partition function for M > 0 (3.19), which is written as a (2N +M) dimensional
integral, can be further reduced to a N dimensional integral:

Zk (N ;M1,M2,M, ζ1, ζ2)

=
eiΘk(M1,M2,M,ζ1,ζ2)Z

(CS)
k (M1)Z

(CS)
k (M2)

N !

∫ N∏
n=1

dµn

2π
(3.21)

× det


[〈
µm

∣∣∣ D̂VI
1 D̂

VI
2

∣∣∣µn

〉]N×N

m,n

[〈
µm

∣∣∣ D̂VI
1 d̂

VI
2

∣∣∣−t0,M,s

〉〉]N×M

m,s[〈〈
t0,M,r

∣∣∣ d̂VI
1 D̂

VI
2

∣∣∣µn

〉]M×N

r,n

[〈〈
t0,M,r

∣∣∣ d̂VI
1 d̂

VI
2

∣∣∣−t0,M,s

〉〉]M×M

r,s

 ,

which implies that the grand partition function (3.9) can be written as [200]

Ξk (κ;M1,M2,M, ζ1, ζ2) =
∞∑

N=0

κN
Zk (N ;M1,M2,M, ζ1, ζ2)

Zk (0;M1,M2,M, ζ1, ζ2)

= Det
(
1 + κD̂VI

1 D̂
VI
2

)
det
r,s

[〈〈
t0,M,r

∣∣∣∣∣ d̂VI
1

1

1 + κD̂VI
2 D̂

VI
1

d̂VI
2

∣∣∣∣∣−t0,M,s

〉〉]
.

3.2.3.1 M = 0 case

When M = 0, the matrix model (3.21) simplifies to

Zk (N ;M1,M2, 0, ζ1, ζ2) = eiΘk(M1,M2,0,ζ1,ζ2)Z
(CS)
k (M1)Z

(CS)
k (M2)

× 1

N !

∫ N∏
n=1

dµn

2π
det
(
[〈µm | ρ̂k (M1,M2, 0, ζ1, ζ2) |µn〉]N×N

m,n

)
, (3.22)

where

ρ̂k (M1,M2, 0, ζ1, ζ2) = D̂VI
1 D̂

VI
2

∣∣∣
M=0

= SM1 (x̂)
1

2 cosh p̂+2πζ1
2

CM1 (x̂)CM2 (x̂+ 2πζ2)
1

2 cosh p̂
2

SM2 (x̂+ 2πζ2) . (3.23)
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This is the same as (3.29). For this expression, we can relate the density matrix to
the quantum curve [167, 283]. The important relations are

C−1
L (x̂) e±

1
2
p̂S−1

L (x̂) = e∓
1
2
iπLe±

1
2
p̂Φb

(
x̂

2πb
− iL

2b
± i

2
b
)

Φb

(
x̂

2πb
+ iL

2b
± i

2
b
)Φb

(
x̂

2πb
+ iL

2b
− i

2
b
)

Φb

(
x̂

2πb
− iL

2b
+ i

2
b
)e− 1

2
x̂

= e±
1
2
p̂
(
e±

1
2
iπLe

1
2
x̂ + e∓

1
2
iπLe−

1
2
x̂
)
,

S−1
L (x̂) e±

1
2
p̂C−1

L (x̂) = e±
1
2
iπLe−

1
2
x̂Φb

(
x̂

2πb
+ iL

2b
− i

2
b
)

Φb

(
x̂

2πb
− iL

2b
+ i

2
b
)Φb

(
x̂

2πb
− iL

2b
∓ i

2
b
)

Φb

(
x̂

2πb
+ iL

2b
∓ i

2
b
)e± 1

2
p̂

=
(
e∓

1
2
iπLe

1
2
x̂ + e±

1
2
iπLe−

1
2
x̂
)
e±

1
2
p̂, (3.24)

where we used the Baker–Campbell–Hausdorff formula eαx̂eβp̂ = e2πiαβkeβp̂eαx̂ and
(.84). By using these relations, we obtain

SL (x̂)
1

2 cosh p̂
2

CL (x̂)

=
[
e

1
2
p̂
(
e

1
2
iπLe

1
2
x̂ + e−

1
2
iπLe−

1
2
x̂
)
+ e−

1
2
p̂
(
e−

1
2
iπLe

1
2
x̂ + e

1
2
iπLe−

1
2
x̂
)]−1

,

CL (x̂)
1

2 cosh p̂
2

SL (x̂)

=
[(
e−

1
2
iπLe

1
2
x̂ + e

1
2
iπLe−

1
2
x̂
)
e

1
2
p̂ +

(
e

1
2
iπLe

1
2
x̂ + e−

1
2
iπLe−

1
2
x̂
)
e−

1
2
p̂
]−1

. (3.25)

The inverse of the density matrix is the product of the above two quantum curves.
Therefore, we finally obtain

ρ̂−1
k (M1,M2, 0, ζ1, ζ2)

=
[(
e−

1
2
iπLe

1
2
x̂ + e

1
2
iπLe−

1
2
x̂
)
e

1
2
p̂ +

(
e

1
2
iπLe

1
2
x̂ + e−

1
2
iπLe−

1
2
x̂
)
e−

1
2
p̂
]

×
[
e

1
2
p̂
(
e

1
2
iπLe

1
2
x̂ + e−

1
2
iπLe−

1
2
x̂
)
+ e−

1
2
p̂
(
e−

1
2
iπLe

1
2
x̂ + e

1
2
iπLe−

1
2
x̂
)]

= e
πi(M1−M2)

2
+π(ζ1+ζ2)ex̂+p̂ + [e

πi(−M1−M2)
2

+π(ζ1+ζ2)+πik + e
πi(M1+M2)

2
+π(ζ1−ζ2)−πik]ep̂

+ e
πi(−M1+M2)

2
+π(ζ1−ζ2)e−x̂+p̂

+ [e
πi(−M1−M2)

2
+π(−ζ1+ζ2) + e

πi(M1+M2)
2

+π(ζ1+ζ2)]ex̂

+ e
πi(−M1+M2)

2
+π(−ζ1−ζ2) + e

πi(−M1+M2)
2

+π(ζ1+ζ2) + e
πi(M1−M2)

2
+π(−ζ1+ζ2) + e

πi(M1−M2)
2

+π(ζ1−ζ2)

+ [e
πi(−M1−M2)

2
+π(ζ1−ζ2) + e

πi(M1+M2)
2

+π(−ζ1−ζ2)]e−x̂

+ e
πi(−M1+M2)

2
+π(−ζ1+ζ2)ex̂−p̂ + [e

πi(−M1−M2)
2

+π(−ζ1−ζ2)+πik + e
πi(M1+M2)

2
+π(−ζ1+ζ2)−πik]e−p̂

+ e
πi(M1−M2)

2
+π(−ζ1−ζ2)e−x̂−p̂. (3.26)

This is the quantum curve associated to the (2,2) model for M = 0.
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3.2.3.2 The quantum curve

The matrix model (3.11) can be written in the following form (see (3.21))

Zk (N ;M1,M2,M, ζ1, ζ2)

=
eiΘk(M1,M2,M,ζ1,ζ2)Z

(CS)
k (M1)Z

(CS)
k (M2)

N !

∫ N∏
n=1

dµn

2π
(3.27)

× det


[〈
µm

∣∣∣ D̂VI
1 D̂

VI
2

∣∣∣µn

〉]N×N

m,n

[〈
µm

∣∣∣ D̂VI
1 d̂

VI
2

∣∣∣−t0,M,s

〉〉]N×M

m,s[〈〈
t0,M,r

∣∣∣ d̂VI
1 D̂

VI
2

∣∣∣µn

〉]M×N

r,n

[〈〈
t0,M,r

∣∣∣ d̂VI
1 d̂

VI
2

∣∣∣−t0,M,s

〉〉]M×M

r,s

 .

This is manifestly an ideal Fermi gas partition function only for M = 0. Indeed, in
this case (3.27) reduces to

Zk (N ;M1,M2, 0, ζ1, ζ2) (3.28)

= Zk (0;M1,M2, 0, ζ1, ζ2)
1

N !

∫ N∏
n=1

dµn det
(
[〈µm | ρ̂k (M1,M2, 0, ζ1, ζ2) |µn〉]N×N

m,n

)
,

with the density matrix ρ̂k(M1,M2, 0, ζ1, ζ2) given as (3.23)

ρ̂k (M1,M2, 0, ζ1, ζ2)

= eπζ2e(−
iζ1
k

+ 1
2
−M1

2k )x̂
Φb

(
x̂

2πb
− iM1

2b
+ ib

2

)
Φb

(
x̂

2πb
+ iM1

2b
− ib

2

) 1

2 cosh p̂
2

e(
iζ1
k

+
M1+M2

2k )x̂Φb

(
x̂

2πb
+ iM1

2b

)
Φb

(
x̂

2πb
− iM1

2b

)
×

Φb

(
x̂

2πb
+ iM2

2b
+ ζ2

b

)
Φb

(
x̂

2πb
− iM2

2b
+ ζ2

b

) 1

2 cosh p̂
2

e(
1
2
−M2

2k )x̂
Φb

(
x̂

2πb
− iM2

2b
+ ib

2
+ ζ2

b

)
Φb

(
x̂

2πb
+ iM2

2b
− ib

2
+ ζ2

b

) , (3.29)

where b =
√
k.

Although an explicit Fermi gas formalism is presently not available in the case
M > 0, we conjecture a formula for the corresponding quantum curve. In [183] the
following formula for the quantum curve at M > 0 and vanishing FI parameters
ζ1 = 0 and ζ2 = 0 was proposed‡

ρ̂−1
k (M1,M2,M, 0, 0)

= e
πi(−M1+M2)

2 e−x̂+p̂ + [e
πi(−M1−M2)

2
+πik + e

πi(M1+M2)
2

−πik]ep̂ + e
πi(M1−M2)

2 ex̂+p̂

+ [e
πi(−M1−M2+2M)

2 + e
πi(M1+M2−2M)

2 ]e−x̂ + E + [e
πi(−M1−M2+2M)

2 + e
πi(M1+M2−2M)

2 ]ex̂

+ e
πi(M1−M2)

2 e−x̂−p̂ + [e
πi(−M1−M2)

2
+πik + e

πi(M1+M2)
2

−πik]e−p̂ + e
πi(−M1+M2)

2 ex̂−p̂.(3.30)

Here E is a constant depending on k, M1, M2 and M .§ Notice that the parameter
dependence of the coefficients is multiplicative. In other words, the functions in

‡There are a couple of notational differences. First, the sign of the Chern-Simons level between
an NS5-brane and a (1, k)5-brane in this work is opposite to that in [183]. Second, according to
[183], we should care of the position of the node whose rank is the lowest. In this chapter, N4 is
always the smallest.

§The procedure in [183] cannot decide the overall phase, the constant term E and the constant
shift of x̂ and p̂. We fixed the overall phase and the shift by comparing to the exact result (3.26).
We will also fix the form of E in (3.32).
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the exponents are linear combinations of the parameters. This is also the case for
the exact result (3.26). Therefore, it is natural to assume that the full parameter
dependence is also multiplicative. With this assumption, we can uniquely combine
(3.30) and (3.26) into¶

ρ̂−1
k (M1,M2,M, ζ1, ζ2)

= e
πi(−M1+M2)

2
+π(ζ1−ζ2)e−x̂+p̂ + [e

πi(−M1−M2)
2

+π(ζ1+ζ2)+πik + e
πi(M1+M2)

2
+π(ζ1−ζ2)−πik]ep̂

+ e
πi(M1−M2)

2
+π(ζ1+ζ2)ex̂+p̂

+ [e
πi(−M1−M2+2M)

2
+π(ζ1−ζ2) + e

πi(M1+M2−2M)
2

+π(−ζ1−ζ2)]e−x̂ + E

+ [e
πi(−M1−M2+2M)

2
+π(−ζ1+ζ2) + e

πi(M1+M2−2M)
2

+π(ζ1+ζ2)]ex̂

+ e
πi(M1−M2)

2
+π(−ζ1−ζ2)e−x̂−p̂ + [e

πi(−M1−M2)
2

+π(−ζ1−ζ2)+πik + e
πi(M1+M2)

2
+π(−ζ1+ζ2)−πik]e−p̂

+ e
πi(−M1+M2)

2
+π(−ζ1+ζ2)ex̂−p̂, (3.31)

where

E = e
πi(−M1+M2)

2
+π(−ζ1−ζ2)+πia1M + e

πi(−M1+M2)
2

+π(ζ1+ζ2)+πia2M

+ e
πi(M1−M2)

2
+π(−ζ1+ζ2)+πia3M + e

πi(M1−M2)
2

+π(ζ1−ζ2)+πia4M , (3.32)

with unknown constant parameters ai. Notice that, when M = 0, the quantum
curve (3.31) – or equivalently, (3.26) – is factorized into the product of the two
quantum curves appearing in (3.25). These quantum curves are the ones associated
to the ABJM theory. Therefore for M = 0 the quantum curve of the (2,2) model is
factorized into a product of two ABJM quantum curves. On the other hand, when
M 6= 0, this factorization does not occur, and this makes the inversion of (3.31)
more difficult.

By comparing the coefficients of (3.31) with the coefficients of the quantum
Seiberg-Witten curve (3.7) we can read off the parameters of the five dimensional
gauge theory in the following way. First we compare the equation ρ̂−1|x̂,p̂→x,p = 0
with the Seiberg-Witten curve at the four asymptotic regions x = ±∞, p = ±∞,
see Fig.3.2:

x→ ∞ : ep = m̃1, m̃2 = −eπi(M2−M),−eπi(−M1+M)−2πζ1 ,

x→ −∞ : ep = m̃3, m̃4 = −eπi(M1−M)−2πζ1 , −eπi(−M2+M),

p→ ∞ : ex = t̃1, t̃3 = −eπiM2−2πζ2−πik, −e−πiM1+πik,

p→ −∞ : ex = t̃2, t̃4 = −eπiM1−πik, −e−πiM2−2πζ2+πik. (3.33)

¶While this draft was in preparation, the quantum mirror curve for general values of
(M1,M2,M, ζ1, ζ2) also appeared in [94]. Our formula for the quantum mirror curve is their
eq. (A.1) combined with eq. (3.5), where m

[FMMN]
i and z

[FMMN]
i in [94] being related to the rank

differences M1,M2,M and the FI parameters ζ1, ζ2 as

m
[FMMN]
1 = eπi(−M1+M2), m

[FMMN]
2 = eπi(M−k), m

[FMMN]
3 = eπi(M1+M2−M−k),

z
[FMMN]
1 = e−2πζ1 , z

[FMMN]
3 = e−2πζ2 .

We thank Prof. Moriyama for pointing it out.
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Figure 3.2: Five-brane web diagram corresponding to the classical limit of the
quantum spectral curve (3.31). m̃i and t̃i are the asymptotic positions of the 5-
branes in the limiting classical curve.

The quantities with tilde can be rescaled as(
m̃1, m̃2, m̃3, m̃4, t̃1, t̃2, t̃3, t̃4

)
→
(
αm̃1, αm̃2, αm̃3, αm̃4, βt̃1, βt̃2, βt̃3, βt̃4

)
,

with arbitrary non zero complex numbers α, β associated to the coordinates trans-
lation (p, x) → (p− logα, x− log β). In (3.7) these ambiguities get removed by
fixing the product a1a2. The gauge coupling q is given by

q =

(
t̃3t̃4

t̃1t̃2

) 1
2

,

which is by itself rescaling invariant. On the other hand the physical mass param-

eters are identified once a1a2 = 1 is fixed. This amounts to set α =
(

t̃1
m̃1m̃2 t̃2

) 1
2 so

that

m1 = αm̃1 =

(
m̃1t̃1

m̃2t̃2

) 1
2

, m2 = αm̃2 =

(
m̃2t̃1

m̃1t̃2

) 1
2

,

m3 = αm̃3 =

(
m̃3t̃4

m̃4t̃3

) 1
2

, m4 = αm̃4 =

(
m̃4t̃4

m̃3t̃3

) 1
2

.

By substituting the explicit expressions of m̃i, t̃i we obtain
m1 = eπi(M2−M)+π(ζ1−ζ2), m2 = eπi(−M1+M)+π(−ζ1−ζ2), m3 = eπi(M1−M)+π(−ζ1−ζ2),

m4 = eπi(−M2+M)+π(ζ1−ζ2), q = eπi(−M1−M2)+2πik. (3.34)

3.2.3.3 Parameter identification with q-PVI system

According to the discussion at the end of subsection 3.2.1.2, the relation between
the q-PVI tau function and the grand partition function of the superconformal
Chern-Simons quiver theory (3.10) follows by combining the above results (3.3),
(3.6), (3.8), (3.34):
τ (θ0, θ1, θt, θ∞; 1, κ, t)

=
F (M1,M2,M, ζ1, ζ2)

Zk (0;M1,M2,M, ζ1, ζ2)

∞∑
N=0

(Ω (M1,M2,M, ζ1, ζ2)κ)
N Zk (N ;M1,M2,M, ζ1, ζ2)

= F (M1,M2,M, ζ1, ζ2) det [1 + Ω (M1,M2,M, ζ1, ζ2)κρ̂k (M1,M2,M, ζ1, ζ2)] ,(3.35)
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where F (M1,M2,M, ζ1, ζ2) and Ω (M1,M2,M, ζ1, ζ2) are some functions indepen-
dent of κ, with the following parameter identification:

θ0
θ1
θt
θ∞
log t
log q

 =
1

4


−1 1 0 2 0
−1 −1 2 0 −2
−1 −1 2 0 2
1 −1 0 2 0
−4 −4 4 0 0



M1 − k
M2 − k
M − k
−iζ1
−iζ2

 . (3.36)

As already discussed in the previous section, an explicit formula for the spectral
density matrix ρ̂k is known to us only for M = 0. We therefore can calculate only
the τ -functions generated by the action of the affine Weyl group transformations
which fix the M = 0 condition. It is therefore useful to rewrite (3.36) after a suitable
change of basis obtained by a Weyl group transformation W (D5) so that we can
realize as many of the shifts in (3.4) as possible without varying M . Let us compute
the relevant change of basis.

The full Weyl group is generated by the fundamental elements sa, a = 1, . . . , 5
associated to each node of D5 Dynkin diagram which linearly realise the group
action on the parameters (M1 − k,M2 − k,M − k,−iζ1,−iζ2) as follows‖

s1 =


1
2

−1
2

0 0 −1
−1

2
1
2

0 0 −1
−1

2
−1

2
1 0 −1

0 0 0 1 0
−1

2
−1

2
0 0 0

 , s2 =


1
2

−1
2

0 0 1
−1

2
1
2

0 0 1
−1

2
−1

2
1 0 1

0 0 0 1 0
1
2

1
2

0 0 0

 , s3 =


1 0 0 0 0
0 −1 0 0 0
0 −1 1 0 0
0 0 0 1 0
0 0 0 0 1

 ,

s4 =


0 0 1 0 0
1 1 −1 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1

 , s5 =


1 0 0 0 0
0 1 0 0 0
1
2

1
2

0 1 0
−1

2
−1

2
1 0 0

0 0 0 0 1

 .

Since each of these fundamental Weyl group transformation induces a similarity
transformation s : ρ̂−1 → Û ρ̂−1Û−1 on the quantum spectral curve, the spectral
determinant (3.6) is invariant. We may therefore choose an arbitrary element w ∈
W (D5) to identify the q-PVI parameters as

θ0
θ1
θt
θ∞
log t
log q

 =
1

4


−1 1 0 2 0
−1 −1 2 0 −2
−1 −1 2 0 2
1 −1 0 2 0
−4 −4 4 0 0

w


M1 − k
M2 − k
M − k
−iζ1
−iζ2

 , (3.37)

‖The explicit expressions for s1, s2, s3, s4, s5 are written in [183] but in a dif-
ferent basis

(
log h̄1, log h̄2, log e1, log e3, log e5

)
, which is related to the current basis

(M1 − k,M2 − k,M − k,−iζ1,−iζ2) as
log h̄1

log h̄2

log e1
log e3
log e5

 = πi


2 0 0 0 0
0 2 −2 0 0
1 1 −2 2 0
1 1 0 0 −2
1 1 −2 −2 0



M1 − k
M2 − k
M − k
−iζ1
−iζ2

 .
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instead of (3.36). In particular, if we choose

w = s3s2s1s3s4s5s1s3s4s2s3s2 =


−1

2
1
2

0 −1 0
−1

2
1
2

0 1 0
0 1 0 0 0
0 0 0 0 1
−1

2
−1

2
1 0 0

 ,

we obtain

θ0 =
−iζ1 − iζ2

2
, θ1 =

M1 +M2 −M − k

2
, θt =

M − k

2
,

θ∞ =
iζ1 − iζ2

2
, t = qM1−k = e

2πiM1
k , q = e

2πi
k . (3.38)

With this parameter identification, the allowed τ -functions are manifestly the ones
not induced by a shift in θt, namely all of them but τ7,8, τ 7,8, τ̄7,8 according to (3.4).

By using (3.38) we find that τi, τ i, τ̄i for M = 0 are given by

τ1,2 = τ

(
M1,M2, 0, ζ1 ∓

i

2
, ζ2 ±

i

2

)
,

τ3,4 = τ

(
M1,M2, 0, ζ1 ±

i

2
, ζ2 ±

i

2

)
,

τ5,6 = τ (M1,M2 ∓ 1, 0, ζ1, ζ2) ,

τ 1,2 = τ

(
M1 − 1,M2 + 1, 0, ζ1 ∓

i

2
, ζ2 ±

i

2

)
,

τ 3,4 = τ

(
M1 − 1,M2 + 1, 0, ζ1 ±

i

2
, ζ2 ±

i

2

)
,

τ 5 = τ (M1 − 1,M2, 0, ζ1, ζ2) ,

τ̄1,2 = τ

(
M1 + 1,M2 − 1, 0, ζ1 ∓

i

2
, ζ2 ±

i

2

)
,

τ̄3,4 = τ

(
M1 + 1,M2 − 1, 0, ζ1 ±

i

2
, ζ2 ±

i

2

)
,

τ̄6 = τ (M1 + 1,M2, 0, ζ1, ζ2) . (3.39)
Since the variables τ7,8, τ 7,8, τ̄7,8 are obstructed to us, we can check the system
(3.5) only after their elimination. This provides a subsystem of six equations in
six variables out of (3.5) given by the first two equations, which explicitly do not
involve τ7,8, τ 7,8, τ̄7,8 and other four. Actually, by eliminating τ7,8, τ 7,8, τ̄7,8 we can
obtain from the remaining six equations in (3.5) three bilinear equations and a
quartic equation. All in all, we then get the system

τ1τ2 − q−2θ1 · tτ3τ4 −
(
1− q−2θ1 · t

)
τ5τ6 = 0, (3.40)

τ1τ2 − tτ3τ4 −
(
1− q−2θt · t

)
τ 5τ̄6 = 0, (3.41)

τ 1τ2 − q−2θ∞τ1τ 2 −
(
1− q−2θ∞

)
τ 5τ6 = 0, (3.42)

τ 3τ4 − q2θ0τ3τ 4 − q−θt
(
1− q2θ0

)
τ 5τ6 = 0, (3.43)

τ 1τ2 − q−θ0−θ1−θ∞− 1
2 · tτ 3τ4 −

(
1− q−θ0−θ1−θt−θ∞− 1

2 · t
)
τ 5τ6 = 0, (3.44)

(τ1τ2 − τ3τ4)
(
τ1τ2 − q2θtτ3τ4

)
−
(
1− q2θ1 · t−1

) (
1− q2θt · t−1

)
q2θ∞ (τ 1τ2 − τ 5τ6) (τ1τ̄2 − τ5τ̄6) = 0. (3.45)
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We found that these hold provided the factors F (M1,M2, 0, ζ1, ζ2) and Ω (M1,M2, 0, ζ1, ζ2)
satisfy the following relations:
F1F2 = F3F4 = F5F6 = F 5F̄6, F 1F2 = F1F 2 = −F 3F4 = −F3F 4 = F 5F6,

− iΩ1 = −iΩ2 = iΩ3 = iΩ4 = Ω5 = −Ω6 = iΩ1 = iΩ2 = −iΩ3 = −iΩ4 = −Ω5

= iΩ̄1 = iΩ̄2 = −iΩ̄3 = −iΩ̄4 = Ω̄6. (3.46)
Needless to say, here we adopt the very same notation as in (3.39) for the tau
functions, both for the labels 1, 2, · · · , 6, and for the under/over-line as shifts of
the parameters (M1,M2, ζ1, ζ2) . The following choice is consistent with all of the
conditions (3.46):

F (M1,M2, 0, ζ1, ζ2) = e
π(M2−M1)(ζ1+ζ2)

2 , Ω (M1,M2, 0, ζ1, ζ2) = e−
πi(M1−M2)

2
+π(ζ1+ζ2),

and we adopt it from now on.
In the next section we explain how to check equations (3.40)-(3.45).

3.2.4 Checks of the q-Painlevé equations
In this subsection we provide non-trivial evidence that the τ -functions (3.39) defined
as Fredholm determinants satisfy the bilinear and quartic equations (3.40)-(3.45).
In order to do this, first we prove some symmetry properties of ρ̂k under a given
set of linear transformations of the parameters (M1,M2, ζ1, ζ2) which are a subset
of the full W (D5) symmetry acting on the quantum mirror curve (3.31). Next,
by using this symmetry property we provide two types of non-trivial checks of
the bilinear/quartic equations: check around the symmetric points under transfor-
mations and the direct proof of the equations at the sub-leading order in κ with
(M1,M2, ζ1, ζ2) kept unfixed. Lastly, by reducing the problem using the above sym-
metries, we provide non-trivial checks of the equations at higher order in κ around
a discrete set of points (M1,M2, ζ1, ζ2).

3.2.4.1 Relation among bilinear equations under Weyl transformations

In this section we consider the discrete symmetry of the spectral density matrix
ρ̂k (M1,M2, 0, ζ1, ζ2) given in (3.29) under similarity transformations which do not
change the spectral determinant (3.6). In particular, under a suitable similarity
transformation (cyclic permutation) we can rewrite the equivalent density matrix

ρ̂k (M1,M2, 0, ζ1, ζ2) = eπζ2e(−
iζ1
k

+1−M1+M2
2k )x̂Φb

(
x̂

2πb
− iM1

2b
+ ib

2

)
Φb

(
x̂

2πb
+ iM1

2b
− ib

2

)Φb

(
x̂

2πb
− iM2

2b
+ ib

2
+ ζ2

b

)
Φb

(
x̂

2πb
+ iM2

2b
− ib

2
+ ζ2

b

) 1

2 cosh p̂
2

× e(
iζ1
k

+
M1+M2

2k )x̂Φb

(
x̂

2πb
+ iM1

2b

)
Φb

(
x̂

2πb
− iM1

2b

)Φb

(
x̂

2πb
+ iM2

2b
+ ζ2

b

)
Φb

(
x̂

2πb
− iM2

2b
+ ζ2

b

) 1

2 cosh p̂
2

,

(3.47)
which for simplicity we still call ρ̂k (though they are not precisely equal to each other
as operators).∗∗ We now consider the symmetry properties of the above density
matrix among different values (M1,M2, ζ1, ζ2) while M = 0 being preserved.

∗∗Explicitly, ρ̂k in (3.29) and ρ̂k in (3.47) are related by the following similarity transformation:

ρ̂
(3.47)
k = Û ρ̂

(3.29)
k Û−1,
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First, by reordering the quantum dilogarithms Φb

(
x̂

2πb
+ · · ·

)
within each group

of four Φb separated by 1

2 cosh p̂
2

we obtain

ρ̂k (M1,M2, 0, ζ1, ζ2) ∼ ρ̂k

(
M1 +M2

2
− iζ2,

M1 +M2

2
+ iζ2, 0, ζ1,

i (M1 −M2)

2

)
,

(3.48)

ρ̂k (M1,M2, 0, ζ1, ζ2) ∼ ρ̂k

(
M1 +M2

2
+ iζ2,

M1 +M2

2
− iζ2, 0, ζ1,−

i (M1 −M2)

2

)
.

Second, by exchanging the first line and the second line in (3.47), which is a cyclic
permutation and can be realized by a similarity transformation, we obtain

ρ̂k (M1,M2, 0, ζ1, ζ2) ∼ ρ̂k (k −M1, k −M2, 0,−ζ1, ζ2) .

Lastly, we also find

ρ̂k (M1,M2, 0, ζ1, ζ2) ∼ ρ̂k (M1,M2, 0, ζ2, ζ1) . (3.49)

It turns out that the above four transformations acting on (M1,M2, ζ1, ζ2) are the
four generators of the Weyl symmetry W (A3 × A1) ⊂ W (D5).

Notice that by using these symmetries one can generate the five bilinear equa-
tions (3.40)-(3.44) just from the two equations (3.40), (3.44). Let us denote the
above Weyl reflections (3.48)-(3.49) as

r1 : (M1,M2, ζ1, ζ2) →
(
M1 +M2

2
− iζ2,

M1 +M2

2
+ iζ2, ζ1,

i(M1 −M2)

2

)
,

r2 : (M1,M2, ζ1, ζ2) →
(
M1 +M2

2
+ iζ2,

M1 +M2

2
− iζ2, ζ1,−

i(M1 −M2)

2

)
,

r3 : (M1,M2, ζ1, ζ2) → (k −M1, k −M2,−ζ1, ζ2) ,
r4 : (M1,M2, ζ1, ζ2) → (M1,M2, ζ2, ζ1) . (3.50)

Then we find

(3.41) = −t · [(3.40)](r2r1)(M1,M2,ζ1,ζ2)
, (3.42) = (3.44) − q−2θ∞ · [(3.44)]r4(M1,M2,ζ1,ζ2)

,

(3.43) = qθ0+θ1−θ∞+ 1
2

([
[(3.44)]r3(M1,M2,ζ1,ζ2)

]
t→q−1t

− [(3.44)]r4(M1,M2,ζ1,ζ2)

)
, (3.51)

where [(· · · )]ri(M1,M2,ζ1,ζ2)
stands for the left-hand side of each equation with (M1,M2, ζ1, ζ2)

substituted by their images under ri (3.50). We will use (3.51) in section 3.2.4.3 to
check the bilinear equations at first order in κ.

with

Û = e(
1
2−

M2
2k )x̂

Φb

(
x̂

2πb +
ζ2
b − iM2

2b + ib
2

)
Φb

(
x̂

2πb +
ζ2
b + iM2

2b − ib
2

) .
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3.2.4.2 Special checks around symmetric points

Taking into account (3.50) and (3.51) we notice that (3.42),(3.43),(3.44) are trivially
satisfied for some special choices of parameters (M1,M2, ζ1, ζ2).

For example, by restricting on the subspace ζ1 = ζ2 which implies θ∞ = 0 by
(3.38) and noticing that this is the fixed locus of the reflection r4 in (3.50), we see
that eq.(3.42) is satisfied.
In the same way we can also show the following by using Weyl transformations.

For (M1,M2, ζ1, ζ2) = (M1,M2, ζ1,−ζ1), the coefficient of the third term in
(3.43) vanishes, the coefficient of the second term is −1 and also τ3 (κ/Ω3) /F3 =
τ4 (κ/Ω4) /F4, τ 3 (κ/Ω3) /F 3 = τ 4 (κ/Ω4) /F 4 (recall our definition of τ -functions in
terms of the spectral determinant (3.35)) follow due to the Weyl symmetry r3r4r3

r3r4r3 : (M1,M2, ζ1, ζ2) → (M1,M2,−ζ1,−ζ2).

Together with F 3F4 = F3F 4 and Ω3 = Ω4 = −Ω3 = −Ω4 (3.46) these implies
τ 3τ4 = τ3τ 4, hence (3.43) is trivially satisfied.

For (M1,M2, ζ1, ζ2) =
(
M1,M2, ζ1,

i(M1−M2−1)
2

)
, the coefficient of the third term

in (3.44) vanishes, the coefficient of the second term is 1 and also τ 1 (κ/Ω1) /F 1 =
τ4 (κ/Ω4) /F4, τ2 (κ/Ω2) /F2 = τ 3 (κ/Ω3) /F 3 follow due to the Weyl symmetry r1.
Hence, together with Ω1 = Ω4,Ω3 = Ω2 and F1F 2 = −F 3F4 (3.46), we find that
(3.44) is trivially satisfied.

Moreover, we notice that (3.41) at (M1,M2, ζ1, ζ2) is equivalent to (3.40) eval-
uated at a different point obtained by a Weyl transformation (M ′

1,M
′
2, ζ

′
1, ζ

′
2) =

(k −M2, k −M1,−ζ1,−ζ2), hence the equation (l.h.s. of (3.40))−(l.h.s. of (3.41))=
0 is trivially satisfied at the fixed points of this Weyl transformation, which are
(M1,M2, ζ1, ζ2) = (M1, k −M1, 0, 0).

3.2.4.3 Analysis to first order in κ

Due to the values of the overall coefficients of each term, the bilinear equations
(3.40)-(3.45) are trivially satisfied at order κ0, while the quartic equation (3.45) is
trivial also at first order in κ. At higher order in κ these equations are non-trivial.
For the bilinear equations (3.40)-(3.44), we can analytically check the equations
at order κ for an arbitrary choice of the parameters (M1,M2, ζ1, ζ2). First let us
consider (3.40). At order κ the bilinear equation reduces to the following linear
relation on ρ̂k(M1,M2, 0, ζ1, ζ2):

tr
[
iρ̂k

(
M1,M2, 0, ζ1 −

i

2
, ζ2 +

i

2

)
+ iρ̂k

(
M1,M2, 0, ζ1 +

i

2
, ζ2 −

i

2

)
+ q−2θ1

(
iρ̂k

(
M1,M2, 0, ζ1 +

i

2
, ζ2 +

i

2

)
+ iρ̂k

(
M1,M2, 0, ζ1 −

i

2
, ζ2 −

i

2

))
−
(
1− q−2θ1t

)
(ρ̂k (M1,M2 − 1, 0, ζ1, ζ2)− ρ̂k (M1,M2 + 1, 0, ζ1, ζ2))

]
= 0.(3.52)

Notice that for all the shifts of the parameters in (3.52), the arguments of the
quantum dilogarithm in ρ̂k are different only by units of i

b
. Hence by using the

recursive relation (.84) we can express all the ρ̂ks entering (3.52) by using only one
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of them up to rational factors:

ρ̂k

(
M1,M2, 0, ζ1 −

i

2
, ζ2 +

i

2

)
= ie−

1
2k

x̂
(
1− e

2πζ2
k

+
πiM2

k e
x̂
k

)
Î1e

1
2k

x̂
(
1 + e

2πζ2
k

−πiM2
k e

x̂
k

)
Î2,

ρ̂k

(
M1,M2, 0, ζ1 +

i

2
, ζ2 −

i

2

)
= −ie

1
2k

x̂
(
1− e

2πζ2
k

−πiM2
k e

x̂
k

)
Î1e

− 1
2k

x̂
(
1 + e

2πζ2
k

+
πiM2

k e
x̂
k

)
Î2,

ρ̂k

(
M1,M2, 0, ζ1 +

i

2
, ζ2 +

i

2

)
= ie

1
2k

x̂
(
1− e

2πζ2
k

+
πiM2

k e
x̂
k

)
Î1e

− 1
2k

x̂
(
1 + e

2πζ2
k

−πiM2
k e

x̂
k

)
Î2,

ρ̂k

(
M1,M2, 0, ζ1 −

i

2
, ζ2 −

i

2

)
= −ie−

1
2k

x̂
(
1− e

2πζ2
k

−πiM2
k e

x̂
k

)
Î1e

1
2k

x̂
(
1 + e

2πζ2
k

+
πiM2

k e
x̂
k

)
Î2,

ρ̂k (M1,M2 − 1, 0, ζ1, ζ2) = e
1
2k

x̂Î1e
− 1

2k
x̂
(
1 + e

2πζ2
k

−πiM2
k e

x̂
k

)(
1 + e

2πζ2
k

+
πiM2

k e
x̂
k

)
Î2,

ρ̂k (M1,M2 + 1, 0, ζ1, ζ2) = e−
1
2k

x̂
(
1− e

2πζ2
k

+
πiM2

k e
x̂
k

)(
1− e

2πζ2
k

−πiM2
k e

x̂
k

)
Î1e

− 1
2k

x̂Î2,

where Î1, Î2 are

Î1 = eπζ2e(−
iζ1
k

+1−M1+M2
2k )x̂Φb

(
x̂

2πb
− iM1

2b
+ ib

2

)
Φb

(
x̂

2πb
− iM2

2b
+ ib

2
+ ζ2

b
+ i

2b

)
Φb

(
x̂

2πb
+ iM1

2b
− ib

2

)
Φb

(
x̂

2πb
+ iM2

2b
− ib

2
+ ζ2

b
− i

2b

) 1

2 cosh p̂
2

,

Î2 = e(
iζ1
k

+
M1+M2

2k )x̂ Φb

(
x̂

2πb
+ iM1

2b

)
Φb

(
x̂

2πb
+ iM2

2b
+ ζ2

b
+ i

2b

)
Φb

(
x̂

2πb
− iM1

2b
− ib

2

)
Φb

(
x̂

2πb
− iM2

2b
+ ζ2

b
− i

2b

) 1

2 cosh p̂
2

. (3.53)

Summing (3.53) with the coefficients in (3.52) we find

iρ̂k

(
M1,M2, 0, ζ1 −

i

2
, ζ2 +

i

2

)
+ iρ̂k

(
M1,M2, 0, ζ1 +

i

2
, ζ2 −

i

2

)
+ q−2θ1

(
iρ̂k

(
M1,M2, 0, ζ1 +

i

2
, ζ2 +

i

2

)
+ iρ̂k

(
M1,M2, 0, ζ1 −

i

2
, ζ2 −

i

2

))
−
(
1− q−2θ1t

)
(ρ̂k (M1,M2 − 1, 0, ζ1, ζ2)− ρ̂k (M1,M2 + 1, 0, ζ1, ζ2)) = 0,

hence (3.40) is satisfied at order κ. We can also show (3.44) at order κ by a
completely parallel calculation. So far we have proved that (3.40) and (3.44) hold
at order κ for any values of (M1,M2, ζ1, ζ2). Since the other three bilinear equations
(3.41),(3.42),(3.43) can be written in some combinations of these two equations by
using (3.51), our calculation also proves that (3.41),(3.42),(3.43) also hold at order
κ for arbitrary (M1,M2, ζ1, ζ2).

3.2.4.4 Exact values of trρ̂k (M1,M2, 0, ζ1, ζ2)
n at integer points

In order to check the equations at higher order, we need to calculate the exact
expressions for the higher traces of the spectral density matrix. In this subsection
we explain that this can be done systematically when k ∈ N and M1,M2, 2iζ1 ∈ Z.
For M1,M2 ∈ Z, the ratios of quantum dilogarithm in the density matrix ρ̂k for
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M = 0 (3.29) reduce to products of hyperbolic functions:

ρ̂k (M1,M2, 0, ζ1, ζ2) = iM1+M2e−
iζ1x̂
k

1

2 cosh x̂+πiM1

2

(
M1∏
r=1

2 sinh
x̂− 2πiσ1,r

2k

)
1

2 cosh p̂
2

×

(
M1∏
r=1

1

2 cosh x̂−2πiσ1,r

2k

)
e

iζ1x̂
k e

iζ2p̂
k

(
M2∏
r=1

1

2 cosh x̂−2πiσ2,r

2k

)
1

2 cosh p̂
2

×

(
M2∏
r=1

2 sinh
x̂− 2πiσ2,r

2k

)
1

2 cosh x̂+πiM2

2

e−
iζ2p̂
k ,

with σi,r = Mi+1
2

− r. See the section 3.2.3 for details. For k ∈ N, by using the
following formula∏n

r=1 2 sinh
x−2πi(n+1

2
−r)

2k

2 cosh x+πin
2

=
i−n∏k−n

r=1 2 cosh
x+2πi( k−n+1

2
−r)

2k

, (0 ≤ n ≤ k)

which can be obtained by the standard formula xn − yn =
∏n

j=1

(
x− e

2πij
n y
)

, we
can further rewrite ρ̂k (M1,M2, 0, ζ1, ζ2) as

ρ̂k (M1,M2, 0, ζ1, ζ2) = e−
iζ1x̂
k

1∏k−M1

r=1 2 cosh
x̂+t0,k−M1,r

2

1

2 cosh p̂
2

1∏M1

r=1 2 cosh
x̂+t0,M1,r

2

e
iζ1x̂
k e

iζ2p̂
k

× 1∏M2

r=1 2 cosh
x̂+tζ2,M2,r

2

1

2 cosh p̂
2

1∏k−M2

r=1 2 cosh
x̂+tζ2,k−M2,r

2

e−
iζ2p̂
k ,

where we have defined tζ,n,r as

tζ,n,r = 2πζ + 2πi

(
n+ 1

2
− r

)
. (3.54)

By performing some similarity transformations we obtain

ρ̂k (M1,M2, 0, ζ1, ζ2) ∼ ρ̂′ = ρ̂′1ρ̂
′
2,

with

ρ̂′1 =
√
A (x̂)

1

2 cosh p̂
2

√
B (x̂),

ρ̂′2 =
√
B (x̂)

1

2 cosh p̂
2

√
A (x̂),

A (x) =
e−

iζ1
k

x(∏k−M1

r=1 2 cosh
x+t0,k−M1,r

2k

)(∏k−M2

r=1 2 cosh
x+tζ2,k−M2,r

2k

) ,
B (x) =

e
iζ1
k

x(∏M1

r=1 2 cosh
x+t0,M1,r

2k

)(∏M2

r=1 2 cosh
x+tζ2,M2,r

2k

) .
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The operator ρ̂′ has the following property:

e
x̂
k ρ̂′ − ρ̂′e

x̂
k =

2∑
a=1

Ĉa|0〉〉〈〈0|D̂a, (3.55)

with

Ĉ1 = e
x̂
2k

√
A (x̂), Ĉ2 = −ρ̂′1e

x̂
2k

√
B (x̂), D̂1 =

√
B (x̂)e

x̂
2k ρ̂′2, D̂2 =

√
A (x̂)e

x̂
2k .

Here we have defined the position eigenstates |x〉 and the momentum eigenstates
|p〉〉 with the following normalizations:

x̂|x〉 = x|x〉, 〈x|y〉 = 2πδ (x− y) ,

p̂|p〉〉 = p|p〉〉, 〈〈p|p′〉〉 = 2πδ (p− p′) , 〈x|p〉〉 = 1√
k
e

ixp
2πk . (3.56)

From (3.55) we can show

tr (ρ̂′)n =
k

2

∫
dx

2π
e−

x
k

n−1∑
ℓ=0

2∑
a=1

(
d

dx

(
〈x| (ρ̂′)ℓ Ĉa|0〉〉

)
〈〈0|D̂a (ρ̂

′)
n−1−ℓ |x〉

−〈x| (ρ̂′)ℓ Ĉa|0〉〉
d

dx

(
〈〈0|D̂a (ρ̂

′)
n−1−ℓ |x〉

))
. (3.57)

If we define φa,ℓ (x) as

φ1,ℓ (x) =
1√

A (x)e
x
2k

〈x| (ρ̂′)ℓ
√
A (x̂)e

x̂
2k |0〉〉, φ2,ℓ (x) =

1√
A (x)e

x
2k

〈x| (ρ̂′)ℓ ρ̂′1
√
B (x̂)e

x̂
2k |0〉〉,

we can write the matrix elements with insertions of Ĉa as

〈x| (ρ̂′)ℓ Ĉ1|0〉〉 =
√
A (x)e

x
2kφ1,ℓ (x) , 〈x| (ρ̂′)ℓ Ĉ2|0〉〉 = −

√
A (x)e

x
2kφ2,ℓ (x) .(3.58)

By using the fact that 〈x|ρ̂′1|y〉 = 〈y|ρ̂′2|x〉 and 〈x|ρ̂′|y〉 = 〈y|ρ̂′|x〉 we can also write
the matrix elements with D̂a in terms of φa,ℓ (x), namely:

〈〈0|D̂1 (ρ̂
′)
ℓ |x〉 =

√
A (x)e

x
2kφ2,ℓ (x) , 〈〈0|D̂2 (ρ̂

′)
ℓ |x〉 =

√
A (x)e

x
2kφ1,ℓ (x) .(3.59)

By using (3.58) and (3.59) we can rewrite (3.57) as

tr (ρ̂′)ℓ = k

∫
dx

2π
A (x)

n−1∑
ℓ=0

(
dφ1,ℓ (x)

dx
φ2,n−1−ℓ (x)− φ1,ℓ (x)

dφ2,n−1−ℓ (x)

dx

)
.

Note that φi,ℓ (x) can be calculated recursively as

φ1,0 (x) =
1√
k
, φ2,0 (x) =

1

k

∫
dy

2π

e
y
k

e
x
k + e

y
k

B (y)
1√
k
,

φ̃i,ℓ (x) =
1

k

∫
dy

2π

e
y
k

e
x
k + e

y
k

A (y)φi,ℓ (y) ,

φi,ℓ+1 (x) =
1

k

∫
dy

2π

e
y
k

e
x
k + e

y
k

B (y) φ̃i,ℓ (y) .

Fran Globlek 147



Magical matrix models from three dimensions

If we further assume M1 +M2 + 2iζ1 ∈ Z, we can apply the same technique as
in [243] to evaluate these integrals. First we introduce a new variable u = e

x
2k , to

rewrite A (x) and B (x) as

A (u) = e−
πζ2(k−M2)

k
u2k−q∏k−M1

r=1

(
u2 + e−

1
k
t0,k−M1,r

)∏k−M2

r=1

(
u2 + e−

1
k
tζ2,k−M2,r

) ,
B (u) = e−

πζ2M2
k

uq∏M1

r=1

(
u2 + e−

1
k
t0,M1,r

)∏M2

r=1

(
u2 + e−

1
k
tζ2,M2,r

) ,
where q =M1 +M2 + 2iζ1. The integration of φ2,0 (x) can be evaluated as [243]

φ2,0 (u) =
1

π
e−

πζ2M2
k

∫ ∞

0

dv
1

u2 + v2
vq+1∏M−

r=1

(
v2 + e−

1
k
t0,M−,r

)∏M+

r=1

(
v2 + e−

1
k
tζ2,M+,r

) 1√
k

=
1

π
e−

πζ2M2
k (−2πi)

∑
w∈C\R≥0

Resv=w

[
1

u2 + v2

× vq+1∏M−
r=1

(
v2 + e−

1
k
t0,M−,r

)∏M+

r=1

(
v2 + e−

1
k
tζ2,M+,r

) 1√
k
B1

(
log(+) v

2πi

) .
Here log(+) u is the logarithm with the branch cut chosen as u ∈ R≥0, and Bj (x)
are the Bernoulli polynomials.†† The poles w contributing to φ2,0 (u) can be listed
explicitly as

w =


±iu
±ie− 1

2k
t0,M1,r , (r = 1, 2, · · · ,M1)

±ie− 1
2k

tζ2,M2,r , (r = 1, 2, · · · ,M2)

.

††We can also chose Bj (x) as any polynomials satisfying

Bj+1 (x+ 1)−Bj+1 (x) = (j + 1)xj .
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In the same way the recursion relations of φi,ℓ can be rewritten as

φi,ℓ (u) =
∑
j≥0

φ
(j)
i,ℓ (u) (log u)

j ,

φ̃i,ℓ (u) =
1

π
e−

πζ2(k−M2)
k

∑
j≥0

(
−(2πi)j+1

j + 1

) ∑
w∈C\R≥0

Resv=w

[

1

u2 + v2
v2k−q+1φ

(j)
i,ℓ (v)∏k−M1

r=1

(
v2 + e−

1
k
t0,k−M1,r

)∏k−M2

r=1

(
v2 + e−

1
k
tζ2,k−M2,r

)
× Bj+1

(
log(+) v

2πi

)]
, (3.60)

φ̃i,ℓ (u) =
∑
j≥0

φ̃
(j)
i,ℓ (u) (log u)

j ,

φi,ℓ+1 (u) =
1

π
e−

πζ2M2
k

∑
j≥0

(
−(2πi)j+1

j + 1

) ∑
w∈C\R≥0

Resv=w

[
1

u2 + v2
(3.61)

vq+1φ̃
(j)
i,ℓ (v)∏M1

r=1

(
v2 + e−

1
k
t0,M1,r

)∏M2

r=1

(
v2 + e−

1
k
tζ2,M2,r

)Bj+1

(
log(+) v

2πi

) ,
where the poles contributing in (3.60) are

w =


±iu
±ie− 1

2k
t0,k−M1,r , (r = 1, 2, · · · , k −M1)

±ie− 1
2k

tζ2,k−M2,r , (r = 1, 2, · · · , k −M2)

poles of φ(j)
i,ℓ (w)

,

and the poles contributing in (3.61) are

w =


±iu
±ie− 1

2k
t0,M1,r , (r = 1, 2, · · · ,M1)

±ie− 1
2k

tζ2,M2,r , (r = 1, 2, · · · ,M2)

poles of φ̃(j)
i,ℓ (w)

.

We can show by induction that the poles of φi,ℓ and φ̃i,ℓ satisfy the following inclu-
sions

{poles of φi,ℓ (u)}

⊂
{
±e−

1
2k

t0,M1,r

}M1

r=1
∪
{
±e−

1
2k

tζ2,M2,r

}M2

r=1
∪
{
±ie−

1
2k

t0,k−M1,r

}k−M1

r=1
∪
{
±ie−

1
2k

tζ2,k−M2,r

}k−M2

r=1
,{

poles of φ̃i,ℓ (u)
}

⊂
{
±ie−

1
2k

t0,M1,r

}M1

r=1
∪
{
±ie−

1
2k

tζ2,M2,r

}M2

r=1
∪
{
±e−

1
2k

t0,k−M1,r

}k−M1

r=1
∪
{
±e−

1
2k

tζ2,k−M2,r

}k−M2

r=1
,

(3.62)
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for both i = 1, 2 and any ` ≥ 0. Once we obtain {φi,ℓ}n−1
ℓ=0 , we can calculate tr (ρ̂′)n

as
n−1∑
ℓ=0

(
dφ1,ℓ

du
φ2,n−1−ℓ − φ1,ℓ

dφ2,n−1−ℓ

du

)
=
∑
j≥0

Ψ(j)
n (u) (log u)j ,

tr (ρ̂′)n =
k

2π
e−

πζ2(k−M2)
k

∑
j≥0

(
−(2πi)j+1

j + 1

) ∑
w∈C\R≥0

Resu=w

[

u2k−q∏k−M1

r=1

(
u2 + e−

1
k
t0,k−M1,r

)∏k−M2

r=1

(
u2 + e−

1
k
tζ2,k−M2,r

)Ψ(j)
n (u)Bj+1

(
log(+) u

2πi

) .

Here the poles w contributing to tr (ρ̂′)n are the ones in the set {poles of φi,ℓ (w)}
listed in (3.62). By using these results, we are able to perform the checks of the
bilinear and quartic equations for the τ -functions at higher order that we list in
Table 3.1.

3.2.5 Coalescence limits: matrix models and quantum curves
The q-Painlevé equations were classified by their symmetry type in [246], where
their coalescence patterns are also discussed. In particular we are interested in the
following one concerning q-Painlevé VI equation

VI → V → III1 → III2 → III3. (3.63)

The q-Painlevé III3 equation, which is the end point of the above coalescence di-
agram, is related to the ABJM theory [46]. In this section, we study the above
coalescence limits in terms of the matrix model and the quantum curve. The de-
generation pattern of the quantum curves matches the one in (3.63). Since the
coalescence limit is similar at all the steps, we study in detail the first one and omit
the details for the others.

The coalescence can be seen as a degeneration of the tau function. In (3.35),
we saw the relation between the q-Painlevé VI tau function and the grand parti-
tion function of the quiver superconformal Chern-Simons matter theory displayed in
Fig.3.1. In (3.35) we normalized the grand partition function by Zk (0;M1,M2,M, ζ1, ζ2).
In this section, we adopt a slightly different normalization factor, namely we define

ZVI
k (N ;M1,M2,M, ζ1, ζ2) =

Zk (N ;M1,M2,M, ζ1, ζ2)

eiΘk(M1,M2,M,ζ1,ζ2)Z
(CS)
k (M1)Z

(CS)
k (M2)

=
1

N ! (N +M)!

∫ N∏
n=1

dµn

2π

N+M∏
n=1

dνn
2π

det


[〈
µm

∣∣∣ D̂VI
1

∣∣∣ νn〉]N×(N+M)

m,n[〈〈
t0,M,r

∣∣∣ d̂VI
1

∣∣∣ νn〉]M×(N+M)

r,n


× det

( [〈
νm

∣∣∣ D̂VI
2

∣∣∣µn

〉](N+M)×N

m,n

[〈
νm

∣∣∣ d̂VI
2

∣∣∣−t0,M,r

〉〉](N+M)×M

m,r

)
,(3.64)
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(k,M1,M2, ζ1) (3.40) (3.41) (3.42) (3.43) (3.44) (3.45)
(2, 1, 0, 0) 7(
2, 1, 1,− i

2

)
3 3 3 3 3 3

(2, 1, 1, 0) 2 2 2 2 2 2(
2, 1, 1, i

2

)
3 3 3 3 3 3

(3, 1, 1,−i) 2 2 2 2(
3, 1, 1,− i

2

)
2 2 2 2 2 2

(3, 1, 1, 0) 2 2 2 2 2 2(
3, 1, 1, i

2

)
2 2 2 2 2 2

(3, 1, 1, i) 2 2 2 2(
3, 1, 2,− i

2

)
2 2

(3, 1, 2, 0) 2 2 2 2 2 2(
3, 1, 2, i

2

)
2

(3, 2, 1, 0) 2 2 2 2 2 2(
3, 2, 1, i

2

)
2

(3, 2, 2,−i) 2 2
(3, 2, 2, 0) 2 2 2(
3, 2, 2, i

2

)
2 2 2 2 2 2

(3, 2, 2, i) 2(
4, 1, 1,− i

2

)
2 2 2 2 2 2(

4, 1, 1, i
2

)
2 2 2 2 2

(4, 1, 2, 0) 2 2 2 2 2 2

Table 3.1: The list of (k,M−,M+, ζ1) for which we have checked that bilinear equa-
tions (3.40), (3.41), (3.42), (3.43), (3.44), and the quartic equation (3.45) for the
Fredholm determinant hold. Each number in the table means that we have con-
firmed the bilinear/quartic equation at least up to a possible O

(
κ#+1

)
correction.

Blank cells stand for the cases where we could not check the equations beyond the
first order in κ (we could check some of them with fixed values of ζ2 to higher order
in κ).
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where we used (3.19). Notice that the integrand of ZVI
k can also be written explicitly

as

ZVI
k (N ;M1,M2,M, ζ1, ζ2) =

1

N ! (N +M)!

∫ N∏
n=1

dµn

2πk

N+M∏
n=1

dνn
2πk

×
N∏

n=1

e(−
iζ1
k

+
2k−M−M2

2k )µn
Φb

(
µn

2πb
− iM1

2b
+ i

2
b
)

Φb

(
µn

2πb
+ iM1

2b
− i

2
b
)Φb

(
µn

2πb
− iM2−2ζ2

2b
+ i

2
b
)

Φb

(
µn

2πb
+ iM2+2ζ2

2b
− i

2
b
)

×
N+M∏
n=1

e(
iζ1
k

+
M1+M2

2k )νn Φb

(
νn
2πb

+ iM1

2b

)
Φb

(
νn
2πb

− iM1

2b

)Φb

(
νn
2πb

+ iM2+2ζ2
2b

)
Φb

(
νn
2πb

− iM2−2ζ2
2b

)
×

(∏N
m<m′ 2 sinh

µm−µm′
2k

∏N+M
n<n′ 2 sinh

νn−νn′
2k∏N

m=1

∏N+M
n=1 2 cosh µm−νn

2k

)2

. (3.65)

The normalization factor in the first line of (3.64) is the prefactor appearing
in (3.19) and is independent of N . This normalization factor provides a result
consistent with the known result in [46] at the end of the coalescence, as we will
comment later. Note that this definition does not contradict our previous analysis
since for M = 0 the two normalization factors coincide (see (3.22)).

For clarity, we will study the coalescence limit by treating at the same time the
matrix model and the quantum curve. In such a way we can provide the relation
between them while flowing along the coalescence. For this purpose, we first clarify
the relation between the matrix model and the quantum curve for q-Painlevé VI.
The conjecture (3.31) implies that

ZVI
k (N ;M1,M2,M, ζ1, ζ2) (3.66)

= ZVI
k (0;M1,M2,M, ζ1, ζ2)

1

N !

∫ N∏
n=1

dµn

2π
det
([〈

µm

∣∣ ρ̂VI
k (M1,M2,M, ζ1, ζ2)

∣∣µn

〉]N×N

m,n

)
,

where ρ̂VI
k is the conjectural form of the inverse of ρ̂−1

k in (3.31). This is our starting
point of the section.

The consistent ways to take the limit of the parameters in each step of the
coalescence (3.63) can be pictorially described through the toric diagram. Indeed,
by Painlevé/gauge theory correspondence [47] we know that each step of the co-
alescence corresponds to the decoupling limit of a fundamental hypermultiplet in
the five dimensional N = 1 gauge theory. Since the mass parameters are encoded
in the Seiberg-Witten curve, which we identify with ρ̂−1

k , as the positions of the
asymptotic regions at x, p = ±∞, i.e. the external legs in Fig.3.2 (see also Fig.3.3),
the mass decoupling limit corresponds to sending one pair of horizontal and vertical
legs to infinity (or to zero) while keeping the other legs fixed.

The first coalescence from q-Painlevé VI to q-Painlevé V is realized by sending
the bottom-left pair of external legs to zero. This can be achieved by introducing
the following new parameters

iM2 = iM ′
2 + 2Λ, ζ1 = ζ ′1 − Λ, ζ2 = Λ, (3.67)

and taking the limit Λ → ∞ while keeping the other parameters fixed, and at the
same time shifting p̂ as p̂→ p̂+2πζ2 so that the locations of the other external legs
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Figure 3.3: The asymptotic behavior of
(
ρ̂VI
k

)−1, or equivalently (3.31). This figure
can be regarded as the five-brane web diagram of the 5d N = 1 SU (2) gauge theory
with Nf = 4 in Fig.3.2.

Figure 3.4: The asymptotic behavior of (3.68). This figure can be regarded as the
five-brane web diagram of the 5d N = 1 SU (2) gauge theory with Nf = 3. This
diagram is the degeneration of the diagram in Fig.3.3.

(3.33) are kept finite:

m̃VI
1 = −eπi(M2−M) → m̃V

1 = e−2πΛm̃VI
1 = −eπi(M ′

2−M),

m̃VI
2 = −eπi(−M1+)−2πζ1 → m̃V

2 = e−2πΛm̃VI
2 = −eπi(−M1+M)−2πζ′1 ,

m̃VI
3 = −eπi(M1−M)−2πζ1 → m̃V

3 = e−2πΛm̃VI
3 = −eπi(M1−M)−2πζ′1 ,

m̃VI
4 = −eπi(−M2+M) → m̃V

4 = e−2πΛm̃VI
4 = −eπi(−M ′

2+M)−4πΛ = 0,

t̃VI
1 = −eπiM2−2πζ2−πik → t̃V1 = t̃VI

1 = −eπiM ′
2−πik,

t̃VI
2 = −eπiM1−πik → t̃V2 = t̃VI

2 = −eπiM1−πik,

t̃VI
3 = −e−πiM1+πik → t̃V3 = t̃VI

3 = −e−πiM1+πik,

t̃VI
4 = −e−πiM2−2πζ2+πik → t̃V4 = t̃VI

4 = −e−πiM ′
2+πik−4πΛ = 0.

See Fig.3.4.
Note that the ratio `4 = m̃V

4

(
t̃V4
)−1

= eπiM−πik is kept finite under the limit

Fran Globlek 153



Magical matrix models from three dimensions

Λ → ∞. Under this procedure the quantum curve
(
ρ̂VI
k

)−1 transforms as(
ρ̂VI
k (M1,M2,M, ζ1, ζ2)

)−1

→
(
ρ̂V
k (M1,M

′
2,M, ζ ′1)

)−1 ≡ lim
Λ→∞

e−πζ2
(
ρ̂VI
k (M1,M2,M, ζ1, ζ2)

)−1
∣∣∣
p̂→p̂+2πζ2

= lim
Λ→∞

[
e

πi(−M1+M′
2)

2
+πζ′1e−x̂+p̂ + [e

πi(−M1−M′
2)

2
+πζ′1+πik + e

πi(M1+M′
2)

2
+πζ′1−πik]ep̂ + e

πi(M1−M′
2)

2
+πζ′1ex̂+p̂

+ [e
πi(−M1−M′

2+2M)

2
+πζ′1−4πΛ + e

πi(M1+M′
2−2M)

2
−πζ′1 ]e−x̂ + E

+ [e
πi(−M1−M′

2+2M)

2
−πζ′1 + e

πi(M1+M′
2−2M)

2
+πζ′1 ]ex̂

+ e
πi(M1−M′

2)

2
−πζ′1−4πΛe−x̂−p̂ + [e

πi(−M1−M′
2)

2
−πζ′1−4πΛ+πik + e

πi(M1+M′
2)

2
−πζ′1−πik]e−p̂

+e
πi(−M1+M′

2)

2
−πζ′1ex̂−p̂

]
= e

πi(−M1+M′
2)

2
+πζ′1e−x̂+p̂ + [e

πi(−M1−M′
2)

2
+πζ′1+πik + e

πi(M1+M′
2)

2
+πζ′1−πik]ep̂ + e

πi(M1−M′
2)

2
+πζ′1ex̂+p̂

+ e
πi(M1+M′

2−2M)

2
−πζ′1e−x̂ + E ′ + [e

πi(−M1−M′
2+2M)

2
−πζ′1 + e

πi(M1+M′
2−2M)

2
+πζ′1 ]ex̂

+ e
πi(M1+M′

2)

2
−πζ′1−πike−p̂ + e

πi(−M1+M′
2)

2
−πζ′1ex̂−p̂, (3.68)

where E is given by (3.32) and E ′ is given by

E ′ = e
πi(−M1+M′

2)

2
−πζ′1+πia1M + e

πi(−M1+M′
2)

2
+πζ′1+πia2M + e

πi(M1−M′
2)

2
−πζ′1+πia3M .

Here we have rescaled
(
ρ̂VI
k

)−1 by a factor e−πζ2 so that the coefficients of limiting
curve remain finite.‡‡ The resulting operator

(
ρ̂V
k

)−1 can be regarded as the quantum
mirror curve of q-Painlevé V.

We now consider the same limit for the matrix model (3.64), or equivalently the
left-hand side of the conjecture (3.66). First, corresponding to the shift p̂→ p̂+2πζ2
in the quantum curve we perform the following similarity transformation

|µ〉 〈µ| → e
iζ2
k

x̂ |µ〉 〈µ| e−
iζ2
k

x̂, |ν〉 〈ν| → e
iζ2
k

x̂ |ν〉 〈ν| e−
iζ2
k

x̂.

Corresponding to the overall rescaling of ρ̂−1
k by e−πζ2 we also multiply both sides

of (3.66) by eπζ2N . This changes D̂VI
2 to eπζ2D̂VI

2 . All in all, D̂V
i and d̂V

i are changed
‡‡In terms of the grand partition function, which appears in the right hand side of (3.35), this

operation corresponds to rescale κ as eπζ2κ.
Matching the similarity transformation and the shift guarantees the equality between the

density matrix and the quantum curve at operator level. We explain this point at the end of this
section.
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into

e−
iζ2
k

x̂D̂VI
1 e

iζ2
k

x̂ = e−
iζ′1
k

x̂e
k−M1

2k
x̂Φb

(
x̂

2πb
− iM1

2b
+ i

2
b
)

Φb

(
x̂

2πb
+ iM1

2b
− i

2
b
) 1

2 cosh p̂−iπM
2

e
iζ′1
k

x̂e
M1
2k

x̂Φb

(
x̂

2πb
+ iM1

2b

)
Φb

(
x̂

2πb
− iM1

2b

) ,
d̂VI
1 e

iζ2
k

x̂ = e
iζ′1
k

x̂e
M1
2k

x̂Φb

(
x̂

2πb
+ iM1

2b

)
Φb

(
x̂

2πb
− iM1

2b

) ,
eπζ2e−

iζ2
k

x̂D̂VI
2 e

iζ2
k

x̂ = e2πΛe
M′

2−4iΛ

2k
x̂
Φb

(
x̂

2πb
+

iM ′
2+4Λ

2b

)
Φb

(
x̂

2πb
− iM ′

2

2b

) 1

2 cosh p̂+iπM
2

e
k−M′

2+4iΛ

2k
x̂

×
Φb

(
x̂

2πb
− iM ′

2

2b
+ i

2
b
)

Φb

(
x̂

2πb
+

iM ′
2+4Λ

2b
− i

2
b
) ,

e−
iζ2
k

x̂d̂VI
2 = e

π
k
Λ(M ′

2−2iΛ)e
M′

2−4iΛ

2k
x̂
Φb

(
x̂

2πb
+

iM ′
2+4Λ

2b

)
Φb

(
x̂

2πb
− iM ′

2

2b

) ,

where we used the new parameterization (3.67) for the right hand side. In this
expression, we can take the Λ → ∞ limit. In this limit, the quantum dilogarithm
function behaves as (.85). In the third line, the factors depending on Λ and the
divergent part of the asymptotic value of the quantum dilogarithm cancel out. On
the other hand, in the fourth line, an overall factor

e
iπM
4k

(
(iM ′

2+2Λ)
2
+4Λ2

)
+ iπM

12 (k+k−1),

appears. However, the same factor also appears in the right hand side of (3.66)
since this factor is independent of N . Therefore, we can get rid of it when we take
the limit:

lim
Λ→∞

e
− iπM

4k

(
(iM ′

2+2Λ)
2
+4Λ2

)
− iπM

12 (k+k−1)eπζ2NZVI
k (N ;M1,M2,M, ζ1, ζ2)

= ZV
k (N ;M1,M

′
2,M, ζ ′1) , (3.69)

where we defined

ZV
k (N ;M1,M

′
2,M, ζ ′1) =

1

N ! (N +M)!

∫ N∏
n=1

dµn

2π

N+M∏
n=1

dνn
2π

× det


[〈
µm

∣∣∣ D̂V
1

∣∣∣ νn〉]N×(N+M)

m,n[〈〈
t0,M,r

∣∣∣ d̂V
1

∣∣∣ νn〉]M×(N+M)

r,n


× det

( [〈
νm

∣∣∣ D̂V
2

∣∣∣µn

〉](N+M)×N

m,n

[〈
νm

∣∣∣ d̂V
2

∣∣∣−t0,M,r

〉〉](N+M)×M

m,r

)
,
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with D̂V
i and d̂V

i defined as

D̂V
1 = e−

iζ′1
k

x̂e
k−M1

2k
x̂Φb

(
x̂

2πb
− iM1

2b
+ i

2
b
)

Φb

(
x̂

2πb
+ iM1

2b
− i

2
b
) 1

2 cosh p̂−iπM
2

e
iζ′1
k

x̂e
M1
2k

x̂Φb

(
x̂

2πb
+ iM1

2b

)
Φb

(
x̂

2πb
− iM1

2b

) ,
d̂V
1 = e

iζ′1
k

x̂e
M1
2k

x̂Φb

(
x̂

2πb
+ iM1

2b

)
Φb

(
x̂

2πb
− iM1

2b

) , , d̂V
2 =

e
i
2ℏ x̂

2

Φb

(
x̂

2πb
− iM ′

2

2b

)
D̂V

2 = e
iπ
4
k− iπ

2
M ′

2
e

i
2ℏ x̂

2

Φb

(
x̂

2πb
− iM ′

2

2b

) 1

2 cosh p̂+iπM
2

Φb

(
x̂

2πb
− iM ′

2

2b
+ i

2
b
)

e
i
2ℏ x̂

2
.

The grand partition function associated to ZV
k is expected to be the matrix model

representation of the q-Painlevé V tau function. We remark that, as was the case
for ZVI

k (3.65), ZV
k can also be expressed without using the operator formalism by

using (3.15) and (3.14) as

ZV
k (N ;M1,M

′
2,M, ζ ′1) =

e
iπ
4
kN− iπ

2
M ′

2N

N ! (N +M)!

∫ N∏
n=1

dµn

2πk

N+M∏
n=1

dνn
2πk

×
N∏

n=1

e

(
− iζ′1

k
+

k−M1
2k

)
µn− i

4πk
µ2
n
Φb

(
µn

2πb
− iM1

2b
+ i

2
b
)
Φb

(
µn

2πb
− iM ′

2

2b
+ i

2
b
)

Φb

(
µn

2πb
+ iM1

2b
− i

2
b
)

×
N+M∏
n=1

e

(
iζ′1
k

+
M1
2k

)
νn+

i
4πk

ν2n Φb

(
νn
2πb

+ iM1

2b

)
Φb

(
νn
2πb

− iM1

2b

)
Φb

(
νn
2πb

− iM ′
2

2b

)
×

(∏N
m<m′ 2 sinh

µm−µm′
2k

∏N+M
n<n′ 2 sinh

νn−νn′
2k∏N

m=1

∏N+M
n=1 2 cosh µm−νn

2k

)2

.

Combining (3.66), (3.68) and (3.69), we find that the coalescence limit VI → V
(3.67) reduces the conjecture (3.66) into the following

ZV
k (N ;M1,M

′
2,M, ζ ′1) =

= ZV
k (0;M1,M

′
2,M, ζ ′1)

1

N !

∫ N∏
n=1

dµn det
([〈

µm

∣∣ ρ̂V
k (M1,M

′
2,M, ζ ′1)

∣∣µn

〉]N×N

m,n

)
.

(3.70)

To implement the remaining steps of the coalescence, we can simply repeat the
same procedure. First, we consider the coalescence from q-Painlevé V to q-Painlevé
III1, where we send the top-right legs to infinity. This is achieved by taking

iM ′
2 → ∞,

under which the positions of the external legs become

m̃1 = −e−πiM+πiM ′
2 = ∞, m̃2 = −eπi(−M1+M)−2πζ′1 , m̃3 = −eπi(M1−M)−2πζ′1 ,

t̃1 = −e−πik+πiM ′
2 = ∞, t̃2 = −eπiM1−πik, t̃3 = −e−πiM1+πik,

`4 =
m̃4

t4
= eπiM−πik,
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Figure 3.5: The asymptotic behavior of (3.71). This figure can be regarded as the
five-brane web diagram of the 5d N = 1 SU (2) gauge theory with Nf = 2. This
diagram is the degeneration of the diagram in Fig.3.4.

with `1 = m̃1t̃
−1
1 = e−πiM+πik finite; see Fig.3.5.

The quantum curve, with an appropriate overall rescaling, becomes

lim
iM ′

2→∞
e−

1
2
iπM ′

2
(
ρ̂V
k (M1,M

′
2,M, ζ ′1)

)−1
=
(
ρ̂III1
k (M1,M, ζ ′1)

)−1
,

where we defined(
ρ̂III1
k (M1,M, ζ ′1)

)−1

= e−
πiM1

2
+πζ′1e−x̂+p̂ + e

πiM1
2

+πζ′1−πikep̂

+ e
πi(M1−2M)

2
−πζ′1e−x̂ + [e−

πiM1
2

−πζ′1+πia1M + e−
πiM1

2
+πζ′1+πia2M ] + e

πi(M1−2M)
2

+πζ′1ex̂

+ e
πiM1

2
−πζ′1−πike−p̂ + e−

πiM1
2

−πζ′1ex̂−p̂. (3.71)

This operator can be regarded as the mirror curve corresponding to q-Painlevé III1.
Correspondingly, on the matrix model side we first multiply by an overall factor
e

1
2
iπM ′

2N and then take the iM ′
2 → ∞ limit, to obtain

lim
iM ′

2→∞
e

1
2
iπM ′

2NZV
k (N ;M1,M

′
2,M, ζ ′1) = ZIII1

k (N ;M1,M, ζ ′1) ,

where we defined

ZIII1
k (N ;M1,M, ζ ′1)

=
1

N ! (N +M)!

∫ N∏
n=1

dµn

2π

N+M∏
n=1

dνn
2π

det


[〈
µm

∣∣∣ D̂III1
1

∣∣∣ νn〉]N×(N+M)

m,n[〈〈
t0,M,r

∣∣∣ d̂III1
1

∣∣∣ νn〉]M×(N+M)

r,n


× det

( [〈
νm

∣∣∣ e iπ
4
ke

i
2ℏ x̂

2 1

2 cosh p̂+iπM
2

e−
i
2ℏ x̂

2
∣∣∣µn

〉](N+M)×N

m,n

[〈
νm

∣∣∣ e i
2ℏ x̂

2
∣∣∣−t0,M,r

〉〉](N+M)×M

m,r

)
.

In this limit, D̂V
1 and d̂V

1 are not affected:

D̂III1
1 = D̂V

1 , d̂III1
1 = d̂V

1 .

ZIII1
k can be regarded as the matrix model corresponding to q-Painlevé III1. Again
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Figure 3.6: The asymptotic behavior of (3.74). This figure can be regarded as the
five-brane web diagram of the 5d N = 1 SU (2) Yang-Mills theory with Nf = 1.
This diagram is degenerated one from the diagram in figure 3.5.

we can also write the integrand of ZIII1
k in the product form:

ZIII1
k (N ;M1,M, ζ ′1)

=
e

iπ
4
kN

N ! (N +M)!

∫ N∏
n=1

dµn

2πk

N+M∏
n=1

dνn
2πk

N∏
n=1

e

(
− iζ′1

k
+

k−M1
2k

)
µn− i

4πk
µ2
nΦb

(
µn

2πb
− iM1

2b
+ i

2
b
)

Φb

(
µn

2πb
+ iM1

2b
− i

2
b
)

×
N+M∏
n=1

e

(
iζ′1
k

+
M1
2k

)
νn+

i
4πk

ν2n Φb

(
νn
2πb

+ iM1

2b

)
Φb

(
νn
2πb

− iM1

2b

) (∏N
m<m′ 2 sinh

µm−µm′
2k

∏N+M
n<n′ 2 sinh

νn−νn′
2k∏N

m=1

∏N+M
n=1 2 cosh µm−νn

2k

)2

.

Combining the above results, the conjecture (3.66) is now reduced to the following
ZIII1

k (N ;M1,M, ζ ′1)

= ZIII1
k (0;M1,M, ζ ′1)

1

N !

∫ N∏
n=1

dµn det
([〈

µm

∣∣ ρ̂III1
k (M1,M, ζ ′1)

∣∣µn

〉]N×N

m,n

)
.(3.72)

We now consider the coalescence from q-Painlevé III1 to q-Painlevé III2. We
send the top-left pair of external legs to m̃3 → ∞ and t̃3 → 0, by first shifting
x, p as x̂ → x̂ − πζ ′1, p̂ → p̂ − πζ ′1 and then taking Λ → ∞ with the following
reparameterization

iM1 = iM ′
1 + Λ, ζ ′1 = −Λ. (3.73)

Under this procedure we are left with

m̃2 = −eπi(−M ′
1+M),

t̃2 = −eπiM ′
1−πik,

`1 =
m̃1

t̃1
= e−πiM+πik, `4 =

m̃4

t̃4
= eπiM−πik, `3 = m̃3t̃3 = e−πiM+πik,

see Fig.3.6. The quantum curve becomes

lim
Λ→∞

e
1
2
πζ′1
(
ρ̂III1
k (M1,M, ζ ′1)

)−1
∣∣∣
x̂→x̂−πζ′1, p̂→p̂−πζ′1

=
(
ρ̂III2
k (M ′

1,M)
)−1

,

where (
ρ̂III2
k (M ′

1,M)
)−1

= e
πiM′

1
2

−πikep̂

+ e
πi(M′

1−2M)

2 e−x̂ + e−
πiM′

1
2

+πia1M + e
πi(M′

1−2M)

2 ex̂

+ e
πiM′

1
2

−πike−p̂ + e−
πiM′

1
2 ex̂−p̂. (3.74)
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This operator can be regarded as the mirror curve corresponding to q-Painlevé
III2. On the matrix model side, we first multiply e−

1
2
πζ′1N , perform the similarity

transformation
|λ〉 〈λ| → e−

iζ′1
2k

x̂e
iζ′1
2k

p̂ |λ〉 〈λ| e−
iζ′1
2k

p̂e
iζ′1
2k

x̂,

both for |µ〉 〈µ| and for |ν〉 〈ν|, and then take the limit Λ → ∞ with the reparametriza-
tion (3.73). We end up with

lim
Λ→∞

e−
iπM
4k (iM ′

1+Λ)
2
− iπM

12 (k+k−1)e−
1
2
πζ′1NZIII1

k (N ;M1,M, ζ ′1) = ZIII2
k (N ;M ′

1,M) ,

where

ZIII2
k (N ;M ′

1,M)

=
1

N ! (N +M)!

∫ N∏
n=1

dµn

2π

N+M∏
n=1

dνn
2π

det


[〈
µm

∣∣∣ D̂III2
1

∣∣∣ νn〉]N×(N+M)

m,n[〈〈
t0,M,r

∣∣∣ d̂III2
1

∣∣∣ νn〉]M×(N+M)

r,n


× det

( [〈
νm

∣∣∣ e iπ
4
ke

i
2ℏ x̂

2 1

2 cosh p̂+iπM
2

e−
i
2ℏ x̂

2
∣∣∣µn

〉](N+M)×N

m,n

[〈
νm

∣∣∣ e i
2ℏ x̂

2
∣∣∣−t0,M,r

〉〉](N+M)×M

m,r

)
.

D̂III1
1 and d̂III1

1 are changed into

D̂III2
1 = e

iπ
4
ke−

1
2
iπM ′

1

Φb

(
x̂

2πb
− iM ′

1

2b
+ i

2
b
)

e
i
2ℏ x̂

2

1

2 cosh p̂−iπM
2

e
i
2ℏ x̂

2

Φb

(
x̂

2πb
− iM ′

1

2b

) ,
d̂III2
1 =

e
i
2ℏ x̂

2

Φb

(
x̂

2πb
− iM ′

1

2b

) .
In the product form we have

ZIII2
k (N ;M1,M)

=
e

iπ
2
kN−πiM′

1N

2

N ! (N +M)!

∫ N∏
n=1

dµn

2πk

N+M∏
n=1

dνn
2πk

N∏
n=1

e−
i

2πk
µ2
nΦb

(
µn

2πb
− iM ′

1

2b
+
i

2
b

)

×
N+M∏
n=1

e
i

2πk
ν2n

1

Φb

(
νn
2πb

− iM ′
1

2b

) (∏N
m<m′ 2 sinh

µm−µm′
2k

∏N+M
n<n′ 2 sinh

νn−νn′
2k∏N

m=1

∏N+M
n=1 2 cosh µm−νn

2k

)2

.

ZIII2
k can be regarded as the matrix model corresponding to q-Painlevé III2. Com-

bining the above results, we obtain

ZIII2
k (N ;M ′

1,M) = ZIII2
k (0;M ′

1,M)
1

N !

∫ N∏
n=1

dµn det
([〈

µm

∣∣ ρ̂III2
k (M ′

1,M)
∣∣µn

〉]N×N

m,n

)
.

(3.75)

Finally, we consider the coalescence from q-Painlevé III2 to q-Painlevé III3. We
can send the bottom-right legs to m̃2 → 0 and t̃2 → ∞ by taking the iM ′

1 → ∞
limit, which leaves `2 = m̃2t̃2 = eπiM−πik finite; see Fig.3.7.
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Figure 3.7: The asymptotic behavior of (3.76). This figure can be regarded as the
five-brane web diagram of the 5d N = 1 SU (2) Yang-Mills theory. This diagram is
the degeneration of the diagram in Fig.3.6.

The quantum curve becomes

lim
iM ′

1→∞
e−

1
2
iπM ′

1
(
ρ̂III2
k (M ′

1,M)
)−1

=
(
ρ̂III3
k (M)

)−1
,

where (
ρ̂III3
k (M)

)−1
= e−πiMex̂ + e−πiMe−x̂ + e−πikep̂ + e−πike−p̂. (3.76)

This operator can be regarded as the mirror curve corresponding to q-Painlevé III3.
On the matrix model side we multiply the overall factor e 1

2
iπM ′

1N and take the limit
iM ′

1 → ∞ to obtain

lim
iM ′

1→∞
e

1
2
iπM ′

1NZIII2
k (N ;M ′

1,M) = ZIII3
k (N ;M) ,

where

ZIII3
k (N ;M)

=
1

N ! (N +M)!

∫ N∏
n=1

dµn

2π

N+M∏
n=1

dνn
2π

det


[〈
µm

∣∣∣ e iπ
4
ke−

i
2ℏ x̂

2 1

2 cosh p̂−iπM
2

e
i
2ℏ x̂

2
∣∣∣ νn〉]N×(N+M)

m,n[〈〈
t0,M,r

∣∣∣ e i
2ℏ x̂

2
∣∣∣ νn〉]M×(N+M)

r,n


× det

( [〈
νm

∣∣∣ e iπ
4
ke

i
2ℏ x̂

2 1

2 cosh p̂+iπM
2

e−
i
2ℏ x̂

2
∣∣∣µn

〉](N+M)×N

m,n

[〈
νm

∣∣∣ e i
2ℏ x̂

2
∣∣∣−t0,M,r

〉〉](N+M)×M

m,r

)
.

(3.77)

As we mentioned in the beginning of this section, this matrix model coincides with
the partition function of ABJM theory with the gauge group U(N)2k×U(N+M)−2k.
This integral can be regarded as the matrix model corresponding to q-Painlevé III3.
Combining the above results, we obtain

ZIII3
k (N ;M) = ZIII3

k (0;M)
1

N !

∫ N∏
n=1

dµn

2π
det
([〈

µm

∣∣ ρ̂III3
k (M)

∣∣µn

〉]N×N

m,n

)
.(3.78)

In this section we derived the relations between the matrix models and the
quantum curves in (3.66), (3.70), (3.72), (3.75) and (3.78). We expect that the grand
canonical partition function of these matrix models provide a conjectural Fredholm
determinant expression of the τ -functions for the relevant q-Painlevé equations, at
least at the specific values of the moduli that we are analysing.
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The result (3.78) we get is consistent with previous findings on q-PIII3 equa-
tion. Indeed (3.76) is the quantum curve associated with local P1×P1. The spectral
determinant of this quantum curve was already known to satisfy the bilinear equa-
tion of the q-Painlevé III3 [46]. On the other hand, the matrix model (3.77) we
find ZIII3

k (N ;M) is the one associated with ABJM theory, as expected from the
results in [46]. The identification of the matrix models goes along the same lines
we followed in the beginning of the Section, eqs.(3.64) and (3.65). We get

ZIII3
k (N ;M) =

e
iπ
2
kN

N ! (N +M)!

∫ N∏
n=1

dµn

2π

N+M∏
n=1

dνn
2π

e
ik
2π

∑N
n=1 µ

2
n− ik

2π

∑N+M
n=1 ν2n

×
∏N

n<n′

(
2 sinh

µn−µn′
2

)2∏N
m=1

∏N+M
n=1 2 cosh µm−νn

2

∏N+M
n<n′

(
2 sinh

νn−νn′
2

)2∏N+M
m=1

∏N
n=1 2 cosh

νm−µn

2

, (3.79)

which is the matrix model associated to the ABJM theory with U(N)2k×U(N +M)−2k

gauge group. Notice that the Chern-Simons level gets renormalised along the flow
to kABJM = 2k. Let us also observe that in the relation between ABJM theory and,
q-Painlevé III3, the rank parameter M corresponds to the time variable, while this
is not the case for the q-Painlevé VI equation we start from.

For the particular case (3.78) we can actually prove our conjecture (3.66). Indeed
in this case an explicit calculation of the inverse of the spectral density matrix(
ρ̂III3
k

)−1 can be performed by showing that this is indeed the quantum Seiberg-
Witten curve for the local P1 × P1 geometry ÔP1×P1 . By using (3.25), we can show
that [167]

ρ̂III3
k (M) = Ô−1

P1×P1 = e
iπ
2
k

∏M
j 2 sinh

x̂+t0,M,j

4k

2 cosh x̂
2

1

2 cosh p̂
2

1∏M
j 2 cosh

x̂+t0,M,j

4k

,

so that (3.78) becomes

ZIII3
k (N ;M) =

i
1
2
M2
eiθ2k(M,0)

N !
Z

(CS)
2k,M

∫ N∏
n=1

dµn

2π

× det

[〈µm

∣∣∣∣∣ e iπ
2
k 1∏M

j 2 cosh
x̂+t0,M,j

4k

1

2 cosh p̂
2

∏M
j 2 sinh

x̂+t0,M,j

4k

2 cosh x̂
2

∣∣∣∣∣µn

〉]N×N

m,n

 .

The above can be shown to coincide with (3.79) [142]. This is a non-trivial check
of the conjecture (3.31). On the other hand, (3.70), (3.72) and (3.75) provide new
conjectural relations between matrix models and quantum curves. Let us also stress
that the normalisation we choose to define ZVI

k in (3.64) is consistent with the one
found in [46].

Finally, let us notice that the conjectured relations (3.70), (3.72) and (3.75)
can actually be proved in the M = 0 case by making use of the results of section
3.2.3. In these cases, the matrix models can be written in the form of (3.28) by
using gluing formula (3.20), and the inverse of the density matrix coincides with the
quantum Seiberg-Witten curve. Explicitly, (3.23) and (3.26) are equal as explained
in section 3.2.3. For M = 0, we can show that the other conjectured relations can
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be proved at the operator level in a similar way. For example, to show (3.70), it is
enough to prove[
e−

iζ′1
k

x̂e
k−M1

2k
x̂Φb

(
x̂

2πb
− iM1

2b
+ i

2
b
)

Φb

(
x̂

2πb
+ iM1

2b
− i

2
b
) 1

2 cosh p̂
2

e
iζ′1
k

x̂e
M1
2k

x̂Φb

(
x̂

2πb
+ iM1

2b

)
Φb

(
x̂

2πb
− iM1

2b

)
×e

iπ
4
ke−

1
2
iπM ′

2
e

i
2ℏ x̂

2

Φb

(
x̂

2πb
− iM ′

2

2b

) 1

2 cosh p̂
2

Φb

(
x̂

2πb
− iM ′

2

2b
+ i

2
b
)

e
i
2ℏ x̂

2

−1

=
[(
e−

1
2
iπM ′

2e
1
2
x̂ + e

1
2
iπM ′

2e−
1
2
x̂
)
e

1
2
p̂ + e

1
2
iπM ′

2e
1
2
x̂e−

1
2
p̂
]

×
[
eπζ

′
1e

1
2
p̂
(
e

1
2
iπM1e

1
2
x̂ + e−

1
2
iπM1e−

1
2
x̂
)
+ e−πζ′1e−

1
2
p̂
(
e−

1
2
iπM1e

1
2
x̂ + e

1
2
iπM1e−

1
2
x̂
)]
.

The right hand side is the quantum curve (3.68) with M = 0. This identity can be
proved by using (3.24) and

e−
iπ
4
ke

1
2
iπM ′

2
e

i
2ℏ x̂

2

Φb

(
x̂

2πb
− iM ′

2

2b
+ i

2
b
)e± 1

2
p̂
Φb

(
x̂

2πb
− iM ′

2

2b

)
e

i
2ℏ x̂

2

= e−
iπ
4
ke

1
2
iπM ′

2

Φb

(
x̂

2πb
− iM ′

2

2b
∓ i

2
b
)

Φb

(
x̂

2πb
− iM ′

2

2b
+ i

2
b
)e± 1

2
(p̂−x̂) =

{(
e−

1
2
iπM ′

2e
1
2
x̂ + e

1
2
iπM ′

2e−
1
2
x̂
)
e

1
2
p̂

e
1
2
iπM ′

2e
1
2
x̂e−

1
2
p̂

.

We can also prove (3.72) and (3.75) at the operator level when M = 0.

3.2.6 Coalescence limits: q-difference equations
Having discussed the coalescence limits at the level of the matrix models, we now
turn to the q-difference equations their grand canonical partition function con-
jecturally satisfy when identified with q-Painlevé τ -functions. In this section we
consider the coalescence limit of the τ -functions in the short-time expansion as in
(3.1). This is the large-radius expansion of the topological string whose gauge the-
ory counterpart is the d = 4 N = 1 SU(2) with four to zero flavors in the electric
frame of its Coulomb branch. Although natural from the perspective of gauge the-
ory, this limit is not ideal from the point of view of the matrix model, which we
expect to be describing the dual magnetic frame [44, 45]. The main issue is the
rescaling of the parameter s. Based on the TS/ST correspondence, we expect the
spectral determinant to be calculating the τ -function (3.1) at s = 1 at any step in
the coalescence series. This can be consistently implemented in a given set of iden-
tifications of parameters (3.37) by choosing a suitable set of Weyl transformations
w so that the s parameter doesn’t flow along the coalescence.

In the following we first briefly recall the standard flow as in [198], then we
discuss the alternative flow in a concrete choice of parameterization.

3.2.6.1 The two types of flow

In 5 dimensions, we find there are two different ways to decouple a massive hyper-
multiplet. This section will serve as an introduction to details of both at the level
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of τ -functions. With that in mind, let us write a generic 5d Nekrasov-Okounkov
τ -function, focusing on one particular hypermultiplet of mass θ whose decoupling
will be described in the two schemes:

τ
(
θ, ~θrest; s, σ, t

)
=
∑
n∈Z

snt(σ+n)2C
(
θ, ~θrest;σ + n

)
Z
(
θ, ~θrest;σ + n, t

)
,

C
(
θ, ~θrest;σ

)
=

(∏
ϵ=±

Gq(1− θ + εσ)

)
Crest

(
~θrest;σ

)
,

Z
(
θ, ~θrest;σ, t

)
=
∑
λ+,λ−

t|λ+|+|λ−|
∏
ϵ=±

Nϕ,λϵ

(
q−θ+ϵσ

)
zrest;λ+,λ−

(
~θrest;σ

)
.

Here, Crest and zrest;λ+,λ− are respectively the one-loop and instanton terms describ-
ing the contributions of the rest of the theory.

Let us first recall the standard holomorphic decoupling limit of a massive hy-
permultiplet

q−θ → ∞, t→ 0, t1 = tq−θ finite.

We will realize this limit by setting θ = ϑ+ iΛ, t = t1q
ϑ+iΛ. In our case, q = e2πi/k

with k > 0, so qiΛ = e−
2πi
k

Λ → 0 as Λ → ∞. Up to some difference of imaginary
units, this is the case worked out in [198], the main points of the calculation whereof
we recall. To begin with, consider the instanton counting part Z

(
θ, ~θrest;σ, t

)
. Since

Nλ,µ(u) =
∏
c∈λ

(
1− q−lλ(c)−aµ(c)−1u

)∏
c∈µ

(
1− qlµ(c)+aλ(c)+1u

)
,

we have

q|λ|(ϑ+iΛ)Nϕ,λ(uq
−ϑ−iΛ) =

∏
c∈µ

(
qϑ+iΛ − qlµ(c)+aλ(c)+1u

)
→ fλ(u

−1),

where fλ(u) =
∏
c∈µ

(
−qlµ(c)+aλ(c)+1u−1

)
. This term is nothing but the five dimen-

sional Chern-Simons coupling.
Slightly tougher is the calculation of the one-loop part, and here also the n-

dependence of the summands has to be taken into account. The functional relations
of Appendix A enable us to write for a shift n ∈ Z

Gq (1 + x± (σ + n)) = Gq (1 + x± σ)

[
Γq(x+ σ)

Γq(x− σ)

]n |n|−1∏
j=0

[x+ sgn(n)σ]
j∏

k=1

[x± (σ + k)],

(3.80)

a relation the reader should make a mental note of, as we will return to it again
from a different perspective. Presently though, we have x = −ϑ− iΛ and want the
limit Λ → ∞. Recalling the definition of q-numbers, we have for any α ∈ C

[α− iΛ] =
1− qα−iΛ

1− q
∼ qα−iΛ

q− 1
,
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as Λ → ∞. Before returning to (3.80), we find it useful to rewrite
Γq(x+ σ)

Γq(x− σ)
=

Γq(x+ σ)Γq(1 + x− σ)

Γq(1 + x+ σ)Γq(x− σ)
· Γq(1 + x+ σ)

Γq(1 + x− σ)
=

1− qx−σ

1− qx+σ

Γq(1 + x+ σ)

Γq(1 + x− σ)

∼ q−2σΓq(1 + x+ σ)

Γq(1 + x− σ)
,

and define
š = s(q− 1)−2σq2σ(ϑ+iΛ− 1

2
)Γq(1− ϑ− iΛ + σ)

Γq(1− ϑ− iΛ− σ)
. (3.81)

Collecting it all and returning to (3.80) we have asymptotically

Gq (1− ϑ− iΛ± (σ + n)) ∼ Gq (1− ϑ− iΛ± σ)

[
Γq(−ϑ− iΛ + σ)

Γq(−ϑ− iΛ− σ)

]n
(q− 1)−n2

qn
2(−ϑ−iΛ)+nσ

= Gq (1− ϑ− iΛ± σ)

(
š

s

)n

(q− 1)−(σ+n)2+σ2 [
q−ϑ−iΛ

](σ+n)2−σ2

= X(1)(θ)−1

(
š

s

)n

(q− 1)−(σ+n)2
[
t1
t

](σ+n)2

,

where in the last line we defined the n-independent factor

X(1) (θ;σ)−1 = (q− 1)σ
2

qθσ
2

Gq (1− ϑ− iΛ± σ) .

It’s now clear that as Λ → ∞,

τ
(
θ, ~θrest; s, σ, t

)
→ X(1) (θ;σ)−1 τ el

(
~θrest; š, σ, t1

)
, (3.82)

where

τ el
(
~θrest; s, σ, t

)
=
∑
n∈Z

snt(σ+n)2Cel
(
~θrest;σ + n

)
Zel
(
~θrest;σ + n, t

)
,

Cel
(
~θrest;σ

)
= (q− 1)−σ2

Crest

(
~θrest;σ

)
,

Zel
(
~θrest;σ, t

)
=
∑
λ+,λ−

t|λ+|+|λ−|
∏
ϵ=±

fλϵ (q
ϵσ) zrest;λ+,λ−

(
~θrest;σ

)
,

and the superscript "el" stands for the fact that the holomorphic decoupling limit
is studied in the electric frame of the gauge theory in five dimensions. Being the
relevant q-Painlevé equation homogeneous, the multiplicative redefinition in (3.82)
preserves it. Notice that the holomorphic decoupling limit implies a redefinition of
the s parameter as in (3.81).

A different kind of decoupling limit has to be defined if one studies the flow of
solutions of the q-Painlevé equation with fixed initial condition s = 1 before and
after the coalescence. We now turn to discuss a class of decoupling limits suitable
in the sense above. Consider the limit

q−θ → 0,

while keeping all other parameters fixed. In the following, we put θ = ϑ−iΛ and con-
sider the Λ → ∞ limit. Consider again the instanton counting part Z

(
θ, ~θrest;σ, t

)
.

Since

Nλ,µ(0) =
∏
c∈λ

(
1− q−lλ(c)−aµ(c)−1 · 0

)∏
c∈µ

(
1− qlµ(c)+aλ(c)+1 · 0

)
= 1,
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we are immediately left with just the zrest;λ+,λ− part in each term of the sum. We
now turn to the one-loop part, referring back to (3.80), this time with x = −ϑ+ iΛ.
Consider first the q-numbers:

[α + iΛ] =
1− qα+iΛ

1− q
→ 1

1− q
.

Therefore, the entire nested product in (3.80) gives (1 − q)−n2 . Next consider the
q-Gamma functions. Using their definition, we can write

Γq(x+ σ)

Γq(x− σ)
= (1− q)−2σ (q

x−σ; q)∞
(qx+σ; q)∞

→ (1− q)−2σ,

since qx = q−ϑ−iΛ → 0 and (0; q)∞ = 1. All in all, we have

Gq (1− ϑ+ iΛ± (σ + n)) ∼ Gq (1− ϑ+ iΛ± σ) (1− q)−(σ+n)2+σ2

.

Therefore, letting

X(2) (θ;σ)−1 = (1− q)σ
2

Gq (1− θ ± σ) ,

we have as Λ → ∞,

τ
(
θ, ~θrest; s, σ, t

)
→ X(2) (θ;σ)−1 τmagn

(
~θrest; s, σ, t

)
where

τmagn
(
~θrest; s, σ, t

)
=
∑
n∈Z

snt(σ+n)2Cmagn
(
~θrest;σ + n

)
Zmagn

(
~θrest;σ + n, t

)
,

Cmagn
(
~θrest;σ

)
= (1− q)−σ2

Crest

(
~θrest;σ

)
,

Zmagn
(
~θrest;σ, t

)
=
∑
λ+,λ−

t|λ+|+|λ−|zrest;λ+,λ−

(
~θrest;σ

)
.

The superscript "magn" indicates that the limit is suitable to preserve the matrix
model realisation of the τ -function, which conjecturally describes the gauge theory
in the magnetic frame.

3.2.6.2 Coalescence limits in the electric frame

Having illustrated the calculation of coalescence limits at a generic step, we turn
to concrete realizations of our dictionary. We first show that the dictionary (3.36)
reproduces the coalescence limits in the electric frame as described in [198]. Formula
(3.36) reads in components as

θ0 =
M2 −M1 − 2iζ1

4
, θ1 =

2M −M1 −M2 + 2iζ2
4

, θt =
2M −M1 −M2 − 2iζ2

4
,

θ∞ =
M1 −M2 − 2iζ1

4
, t = qk+M−M1−M2 , q = e

2πi
k .

Let us now examine the holomorphic decoupling limits in the matrix model param-
eters. First, the redefinition M2 =M ′

2 − 2iΛ, ζ1 = ζ ′1 − Λ, ζ2 = Λ leads to

q−θ1−θ∞ → ∞, t→ 0, t1 = tq−θ1−θ∞ = q
M−2M1−M′

2+iζ′1
2 , Λ → ∞,
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which corresponds to §3 of [198]. Next, it can be checked that setting M ′
2 = −iΛ

leads to

q−θt+θ0 → ∞, t1 → 0, t2 = t1q
−θt+θ0 = q−M1 , Λ → ∞,

which corresponds to §4 of [198], up to a redefinition θ0 ↔ −θ0, which is a symmetry
of the original q−PVI tau function. Next, it can be checked that M1 = M ′

1 − iΛ,
ζ ′1 = −Λ leads to

q−θt−θ0 → ∞, t2 → 0, t3 = t2q
−θt−θ0 = q−

M+M′
1

2 , Λ → ∞,

which corresponds to §5 of [198]. Finally, one can check that M ′
1 = −iΛ leads to

q−θ1+θ∞ → ∞, t3 → 0, t4 = t3q
−θ1+θ∞ = q−M ,∞,

which corresponds to §6 of [198].

3.2.6.3 Coalescence limits in the magnetic frame

In the following subsections we focus on the coalescence limits suitable for the
magnetic frame, where the τ -functions at s = 1 are identified with the grand par-
tition functions of the suitable quiver Chern-Simons matrix models. This can be
achieved by modifying the dictionary (3.36) as in (3.37) by a specific class of Weyl
transformations. By inspection, one finds that there are 48 = 4! × 2 possibilities
corresponding to the permutations of four masses and the inversion t→ t−1.

We now describe in detail a specific parameter identification among them and
describe the corresponding coalescence limits. At each step, we give the sets of
shifted τ functions and their bilinear relations. These depend on the specific choice
of coalescence. All the choices, however, end on the identical q-PIII3 equation. For
the other choices, see Appendix C.

3.2.6.4 q-PVI → q-PV

We consider the dictionary:
θ0
θ1
θt
θ∞
log t
log q

 =
1

4


−1 1 0 2 0
−1 −1 2 0 −2
−1 −1 2 0 2
1 −1 0 2 0
−4 −4 4 0 0

 w̃


M1 − k
M2 − k
M − k
−iζ1
−iζ2

 ,

with the Weyl group element

w̃ = s2s1s3s4s2s3 =


1
2

1
2

−1 0 1
1
2

1
2

−1 0 −1
1 1 −1 0 0
0 0 0 1 0
−1

2
1
2

0 0 0

 ,

which leads to the simple identification

θ0 = − i

2
(ζ1 − ζ2) , θ1 =

M1 − k

2
, θt =

M2 − k

2
, θ∞ = − i

2
(ζ1 + ζ2) , t = qM−k = e

2πiM
k ,

q = e
2πi
k .
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We proceed with the limit by setting M2 =M ′
2 − 2iΛ, ζ1 = ζ ′1 − Λ, ζ2 = Λ. We

have
q−θt+θ0 = e

πi(k−M′
2−iζ′1)

k e
4πΛ
k → 0, Λ → ∞.

Further, let θ⋆ = θ0 + θt =
M ′

2−iζ′1−k

2
and define the q-PV tau function as

τV (θ1, θ⋆, θ∞; s, σ, t) =
∑
n∈Z

snt(σ+n)2CV (θ1, θ⋆, θ∞;σ + n)ZV (θ1, θ⋆, θ∞;σ + n, t) ,

CV (θ1, θ⋆, θ∞;σ) = (1− q)−σ2
∏

ϵ,ϵ′=±

Gq (1 + εθ∞ − θ1 + ε′σ)
∏
ϵ=±

Gq (1− θ⋆ + εσ)

Gq (1 + 2εσ)
,

ZV (θ1, θ⋆, θ∞;σ, t) =
∑
λ+,λ−

t|λ+|+|λ−|

∏
ϵ,ϵ′=±Nϕ,λϵ′

(
qϵθ∞−θ1−ϵ′σ

)∏
ϵ=±Nλϵ,ϕ

(
qϵσ−θ⋆

)∏
ϵ,ϵ′ Nλϵ,λϵ′

(q(ϵ−ϵ′)σ)
.

Let us consider the limit for the τ functions. First, define the scaling prefactors

X1,2 = X

(
θ0, θ1, θt, θ∞ ± 1

2
, σ, t

)
, X3,4 = X

(
θ0 ±

1

2
, θ1, θt, θ∞, σ ± 1

2
, t

)
,

X5,6 = X

(
θ0, θ1 ∓

1

2
, θt, θ∞, σ, t

)
, X7,8 = X

(
θ0, θ1, θt ∓

1

2
, θ∞, σ ± 1

2
, t

)
,

with
X(θ0, θ1, θt, θ∞, σ, t) = t−θ2t−θ20(1− q)σ

2
∏
ϵ=±

Gq (1− θt + θ0 + εσ)−1 .

Here, the first or second index will correspond to the choice of the upper or lower
sign, respectively. Next, define the shifted q−PV tau functions

τV
1,2 = τV

(
θ1, θ⋆, θ∞ ± 1

2
; s, σ, t

)
, τV

3,4 = τV
(
θ1, θ⋆ ±

1

2
, θ∞; s, σ ± 1

2
, t

)
,

τV
5,6 = τV

(
θ1 ∓

1

2
, θ⋆, θ∞; s, σ, t

)
.

Then, our discussion in subsection 3.2.6.1 implies that
Xiτ

VI
i (θ0, θ1, θt, θ∞; s, σ, t) → τV

i (θ1, θ⋆, θ∞; s, σ, t), i = 1, 2, 3, 4, 5, 6

X7τ
VI
7 (θ0, θ1, θt, θ∞; s, σ, t) → s−1 · τV

4 (θ0, θ∗, θ∞; s, σ, t),

X8τ
VI
8 (θ0, θ1, θt, θ∞; s, σ, t) → s · τV

3 (θ0, θ∗, θ∞; s, σ, t).

For the tau functions as we have defined them, w We then obtain the following
nontrivial bilinear identities for the q-PV τ -functions – omitting the "V" superscript
for readability:

τ1τ2 − (1− q)−
1
2 t

1
2 q−2θ1τ3τ4 −

(
1− q−2θ1t

)
τ5τ6 = 0,

τ1τ2 − (1− q)−
1
2 t

1
2 τ3τ4 − τ 5τ̄6 = 0,

τ1τ2 − (1− q)−
1
2 t−

1
2 τ3τ4 + (1− q)−

1
2 t−

1
2

(
1− q−2θ1t

)
τ̄3τ 4 = 0,

τ 5τ6 + q−
1
4
−θ1−θ∞(1− q)−

1
2 t

1
2 τ3τ 4 − τ 1τ2 = 0,

τ 5τ6 + q−
1
4
−θ1+θ∞(1− q)−

1
2 t

1
2 τ 3τ4 − τ1τ 2 = 0,

τ 5τ6 + q
1
2
+θ⋆(1− q)−

1
2 t−

1
2

(
τ3τ4 − τ 3τ4

)
= 0.

Note that the fourth and eighth equation from (3.5) became trivial.
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3.2.6.5 q-PV → q-PIII1
The next limit amounts to iM ′

2 → ∞ which means

q−θ⋆ = q
k+iζ′1

2 e−πΛ/k → 0, Λ → ∞.

Let us define the appropriate τ function as

τ III1 (θ1, θ∞; s, σ, t) =
∑
n∈Z

snt(σ+n)2CIII1 (θ1, θ∞;σ + n)ZIII1 (θ1, θ∞;σ + n, t) ,

CIII1 (θ1, θ∞;σ) = (1− q)−2σ2

∏
ϵ,ϵ′=±Gq (1− θ1 + εθ∞ + ε′σ)∏

ϵ=±Gq (1 + 2εσ)
,

ZIII1 (θ1, θ∞;σ, t) =
∑
λ+,λ−

t|λ+|+|λ−|
∏

ϵ,ϵ′=±

Nϕ,λϵ

(
q−θ1+ϵθ∞−ϵ′σ

)
Nλϵ,λϵ′

(q(ϵ−ϵ′)σ)
.

Calculations are completely analogous to the previous section. Because of q−θ∗ → 0,
it’s easy to see that ZV (θ0, θ∗, θt;σ, t) → ZIII1 (θ0, θt;σ, t). We define the scaling
prefactors

X1,2(θ1, θ⋆, θ∞, σ) = X

(
θ1, θ⋆, θ∞ ± 1

2
, σ

)
,

X3,4(θ1, θ⋆, θ∞, σ) = X

(
θ1, θ⋆ ±

1

2
, θ∞, σ ± 1

2

)
,

X5,6(θ1, θ⋆, θ∞, σ) = X

(
θ1 ∓

1

2
, θ⋆, θ∞, σ

)
,

with
X(θ1, θ⋆, θ∞, σ) = (1− q)−σ2

∏
ϵ=±

Gq (1− θ⋆ + εσ)−1 ,

and the shifted q-PIII1 tau functions

τ III1
1,2 = τ III1

(
θ1, θ∞ ± 1

2
; s, σ, t

)
,

τ III1
3 = s

1
2 τ III1

(
θ1, θ∞; s, σ +

1

2
, t

)
, τ III1

4,5 = τ III1
(
θ1 ∓

1

2
, θ∞; s, σ, t

)
,

so that in the limit we find

X1,2τ
V
1,2(θ1, θ⋆, θ∞; s, σ, t) → τ III1

1,2 (θ1, θ∞; s, σ, t),

X3,4τ
V
3,4(θ1, θ⋆, θ∞; s, σ, t) → s∓

1
2 τ III1

3 (θ1, θ∞; s, σ, t),

X5,6τ
V
5,6(θ1, θ⋆, θ∞; s, σ, t) → τ III1

4,5 (θ1, θ∞; s, σ, t).

The resulting bilinear equations are the following:

τ1τ2 + (q− 1)−1q−2θ1t
1
2 τ 23 −

(
1− q−2θ1t

)
τ4τ5 = 0,

τ1τ2 + (q− 1)−1t
1
2 τ 23 − τ 4τ̄5 = 0,

τ1τ2 + (q− 1)−1t−
1
2 τ 23 − (q− 1)−1t−

1
2

(
1− q−2θ1t

)
τ 3τ̄3 = 0,

τ 4τ5 − (q− 1)−1q−
1
4
−θ1−θ∞t

1
2 τ 3τ3 − τ 1τ2 = 0,

τ 4τ5 − (q− 1)−1q−
1
4
−θ1+θ∞t

1
2 τ 3τ3 − τ 2τ1 = 0.
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3.2.6.6 q-PIII1 → q-PIII2
We now consider the limit M1 →M ′

1 − iΛ, ζ ′1 = −Λ which in our dictionary implies

q−θ1+θ∞ = q
k−M′

1
2 e−2πΛ/k → ∞.

Let us denote by θ∗ = θ1 + θ∞ and define the appropriate τ function as

τ III2 (θ∗; s, σ, t) =
∑
n∈Z

snt(σ+n)2CIII2 (θ∗;σ + n)ZIII2 (θ∗;σ + n, t) ,

CIII2 (θ∗;σ) = (1− q)−3σ2
∏
ϵ=±

Gq (1− θ∗ + εσ)

Gq (1 + 2εσ)
,

ZIII2 (θ∗;σ, t) =
∑
λ+,λ−

t|λ+|+|λ−|
∏

ϵ=±Nϕ,λϵ

(
q−θ∗−ϵσ

)∏
ϵ,ϵ′=±Nλϵ,λϵ′

(q(ϵ−ϵ′)σ)
.

We define the scaling prefactors

X1,2(θ1, θ∞, σ) = X

(
θ1, θ∞ ± 1

2
, σ

)
,

X3(θ1, θ∞, σ) = X

(
θ1, θ∞, σ +

1

2

)
,

X4,5(θ1, θ∞, σ) = X

(
θ1 ∓

1

2
, θ∞, σ

)
,

with
X(θ1, θ∞, σ) = (1− q)−σ2

∏
ϵ=±

Gq (1− θ1 + θ∞ + εσ)−1 ,

and the shifted τ functions:

τ III2
1,2 = τ III2

(
θ∗ ±

1

2
; s, σ, t

)
,

τ III2
3 = s

1
2 · τ III2

(
θ∗; s, σ +

1

2
, t

)
.

Then we have as Λ → ∞,

X1,5τ
III1
1,5 (θ1, θ∞; s, σ, t) → τ III2

1 (θ∗; s, σ, t),

X2,4τ
III1
2,4 (θ1, θ∞; s, σ, t) → τ III2

2 (θ∗; s, σ, t),

X3τ
III1
3 (θ1, θ∞; s, σ, t) → τ III2

3 (θ∗; s, σ, t).

The resulting bilinear equations are

τ1τ2 − (1− q)−
1
2 t

1
2 τ 23 − τ̄1τ 2 = 0,

τ1τ2 − (1− q)−
1
2 t−

1
2

(
τ 23 − τ 3τ̄3

)
= 0,

τ 1τ2 − τ1τ 2 − (1− q)−
1
2 t

1
2q−

1
4
−θ∗τ 3τ3 = 0.

Fran Globlek 169



Magical matrix models from three dimensions

3.2.6.7 q-PIII2 → q-PIII3
Finally we have M ′

1 = −iΛ,Λ → ∞, which corresponds to

q−θ∗ = −e−πΛ/k → 0.

Let us define the appropriate τ function

τ III3 (s, σ, t) =
∑
n∈Z

snt(σ+n)2CIII3 (σ + n)ZIII3 (σ + n, t) ,

CIII3 (σ) = (1− q)−4σ2
∏
ϵ=±

1

Gq (1 + 2εσ)
,

ZIII3 (θ0, θt;σ, t) =
∑
λ+,λ−

t|λ+|+|λ−| 1∏
ϵ,ϵ′=±Nλϵ,λϵ′

(q(ϵ−ϵ′)σ)
.

To perform the limit, we first define the scaling prefactors

X1,2(θ∗, σ) = X

(
θ∗ ±

1

2
, σ

)
, X3(θ∗, σ) = X

(
θ⋆, σ +

1

2

)
with

X(θ∗, σ) = (1− q)−σ2
∏
ϵ=±

Gq (1− θ⋆ + εσ)−1 ,

and the shifted τ functions

τ III3
1 = τ III3(s, σ, t), τ III3

2 = s
1
2 τ III3

(
s, σ +

1

2
, t

)
.

Then we have as Λ → ∞,

X1,2τ
III2
1,2 (θ∗; s, σ, t) → τ III3

1 (s, σ, t),

X3τ
III2
3 (θ∗; s, σ, t) → τ III2

2 (s, σ, t),

and, as expected, we find these to satisfy the bilinear equations of q-Painlevé III3,

τ 21 − τ 1τ̄1 − t
1
2 τ 22 = 0,

τ 21 − t−
1
2

(
τ 22 − τ 2τ̄2

)
= 0.

3.2.7 Different coalsecence limit
The identification in the previous section is not the only possible limit. An analysis
of the scaling parameters identifies 4!× 2 = 48 different elements of the Weyl group
which lead to a well-defined endpoint in q−PIII3. We consider another choice. We
pick 

θ0
θ1
θt
θ∞
log t
log q

 =
1

4


−1 1 0 2 0
−1 −1 2 0 −2
−1 −1 2 0 2
1 −1 0 2 0
−4 −4 4 0 0

 w̃


M1 − k
M2 − k
M − k
−iζ1
−iζ2

 .
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with the Coxeter group element

w̃ = s3s4s5s2s3s4s5s1s3s4s5s2s3 =


1
2

1
2

0 −1 0
1
2

1
2

0 1 0
0 1 0 0 0
0 0 0 0 1
−1

2
−1

2
1 0 0

 ,

which leads to the identification

θ0 =
−iζ1 − iζ2

2
, θ1 =

M2 −M

2
, θt =

M −M1

2
, θ∞ =

iζ1 − iζ2
2

,

t = q−M1−k = e−
2πiM1

k , q = e
2πi
k . (3.83)

3.2.7.1 q-PVI → q-PV

Let θ∗ = 1
2
(M ′

2 −M − iζ ′1), in terms of which (3.83) under M2 = M ′
2 − 2iΛ, ζ1 =

ζ ′1 − Λ, ζ2 = Λ becomes

−θ1 + θ∞ = −θ∗, −θ1 − θ∞ = −θ∗ − iζ ′1 + 2iΛ, Λ → ∞

Noting that as q = e2πi/k and k > 0, we have q−θ1−θ∞ = q−θ∗−iζ′1e−4πΛ/k → 0. To
perform the limit, first define the scaling prefactors

X(θ0, θ1, θt, θ∞, σ) = (1− q)−σ2
∏
ϵ=±

Gq (1− θ1 − θ∞ + εσ)−1

X1,2 = X

(
θ0, θ1, θt, θ∞ ± 1

2
, σ

)
X3,4 = X

(
θ0 ±

1

2
, θ1, θt, θ∞, σ ± 1

2

)
X5,6 = X

(
θ0, θ1 ∓

1

2
, θt, θ∞, σ

)
X7,8 = X

(
θ0, θ1, θt ∓

1

2
, θ∞, σ ± 1

2

)
Here, the first or second index will correspond to the choice of the upper or ± sign,
respectively. Note that the prefactor is not exactly the same as the one found from
the grand canonical partition function of the 3 dimensional matrix model. This
is not surprising, however, as we expect these functions to differ by the arbitrary
functions Zi. Next, define the shifted q−PV tau functions

τV
1 = τV

(
θ0, θ∗ −

1

2
, θt; s, σ, t

)
τV
2 = τV

(
θ0, θ∗ +

1

2
, θt; s, σ, t

)
τV
3 = τV

(
θ0 +

1

2
, θ∗, θt; s, σ +

1

2
, t

)
τV
4 = τV

(
θ0 −

1

2
, θ∗, θt; s, σ − 1

2
, t

)
τV
5 = τV

(
θ0, θ∗, θt −

1

2
; s, σ +

1

2
, t

)
τV
6 = τV

(
θ0, θ∗, θt +

1

2
; s, σ − 1

2
, t

)
Then, our discussion implies that

Xiτ
VI
i (θ0, θ1, θt, θ∞; s, σ, t) → τV

i (θ0, θ∗, θ∞; s, σ, t), i = 1, 2, 3, 4

X5τ
VI
5 (θ0, θ1, θt, θ∞; s, σ, t) → τV

1 (θ0, θ∗, θ∞; s, σ, t),

X6τ
VI
6 (θ0, θ1, θt, θ∞; s, σ, t) → τV

2 (θ0, θ∗, θ∞; s, σ, t),

Xiτ
VI
i (θ0, θ1, θt, θ∞; s, σ, t) → τV

i−2(θ0, θ∗, θ∞; s, σ, t), i = 7, 8
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We remark that these are again not the same limits as in [198], where the authors
find that, up to the prefactors, τ5 and τ6 degenerate to q-shifted τ1 and τ2, re-
spectively. For the tau functions as we have defined them, we obtain the following
nontrivial bilinear identities, omitting the "V" superscript for readability:

τ1τ2 − (1− q)
1
2 · tτ3τ4 −

(
1− q−2θt · t

)
τ 1τ̄2 = 0,

(1− q)−
1
2 τ1τ2 − τ3τ4 + q2θtτ 5τ̄6 = 0,

(1− q)−
1
2 τ1τ2 − q2θtτ3τ4 +

(
1− q−2θt · t

)
q2θtτ5τ6 = 0,

τ 1τ2 + (1− q)
1
2q−θ∗+θt− 1

2 · tτ 5τ6 − τ1τ 2 = 0,

(1− q)−
1
2 τ 1τ2 + qθ0+2θtτ 5τ6 − qθtτ 3τ4 = 0,

(1− q)−
1
2 τ 1τ2 + q−θ0+2θtτ 5τ6 − qθtτ3τ 4 = 0.

Note that the first and fifth equation from (3.5) became trivial.

3.2.7.2 q−PV → q−PVdeg/q−PIII1
The next limit is iM ′

2 → ∞ which means

q−θ∗ = q
M+iζ′1

2 e−πΛ/k → 0, Λ → ∞

Technically speaking, this limit lands us in the degenerate case of q-Painlevé V,
q-PVdeg. This, however, becomes q−PIII1 after a change of variables. Therefore, we
shall not distinguish them, and write q−PIII1. Let us define the appropriate tau
function as

τ III1 (θ0, θt; s, σ, t) =
∑
n∈Z

snt(σ+n)2CIII1 (θ0, θt;σ + n)ZIII1 (θ0, θt;σ + n, t) ,

CIII1 (θ0, θt;σ) = (1− q)−2σ2

∏
ϵ,ϵ′=±Gq (1 + εσ − θt + ε′θ0)∏

ϵ=±Gq (1 + 2εσ)
,

ZIII1 (θ0, θt;σ, t) =
∑
λ+,λ−

t|λ+|+|λ−|
∏

ϵ,ϵ′=±

Nλϵ,ϕ

(
qϵσ−θt−ϵ′θ0

)
Nλϵ,λϵ′

(q(ϵ−ϵ′)σ)

Calculations are completely analogous to the previous section. Because of q−θ∗ → 0,
it’s easy to see that ZV (θ0, θ∗, θt;σ, t) → ZIII1 (θ0, θt;σ, t). To deal with the 1-loop
terms, using the function

X(θ0, θ∗, θt, σ) = tθ
2
0+θ2t (1− q)−σ2

∏
ϵ=±

Gq (1− θ∗ + εσ)−1

define the scaling prefactors

X1,2(θ0, θ∗, θt, σ) = X

(
θ0, θ∗ ∓

1

2
, θt, σ

)
,

X3,4(θ0, θ∗, θt, σ) = X

(
θ0 ±

1

2
, θ∗, θt, σ ± 1

2

)
,

X5,6(θ0, θ∗, θt, σ) = X

(
θ0, θ∗, θt ∓

1

2
, σ ± 1

2

)
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Figure 3.8: A rewriting of 3.5. The E
(1)
3 symmetry is generated by exchanging

the asymptotics purely in the ep directions, likewise for purely ex, and finally by
exchanging the asymptotic in the ex+p direction with the asymptotics in the e−x

and e−p direction simultaneously.

We define the shifted q-PIII1 tau functions

τ III1
1 = τ III1 (θ0, θt; s, σ, t)

τ III1
2 = τ III1

(
θ0 +

1

2
, θt; s, σ +

1

2
, t

)
τ III1
3 = τ III1

(
θ0 −

1

2
, θt; s, σ − 1

2
, t

)
τ III1
4 = τ III1

(
θ0, θt −

1

2
; s, σ +

1

2
, t

)
τ III1
5 = τ III1

(
θ0, θt +

1

2
; s, σ − 1

2
, t

)
Then in the limit we find

Xiτ
V
i (θ0, θ∗, θt, σ; s, σ, t) → τ III1

1 (θ0, θt, σ; s, σ, t), i = 1, 2

Xiτ
V
i (θ0, θ∗, θt, σ; s, σ, t) → τ III1

i−1 (θ0, θt, σ; s, σ, t), i = 3, 4, 5, 6

The bilinear equations obtained from this limit are the following:

τ 21 −
(
1− q−2θt · t

)
τ 1τ̄1 − (1− q) · t

1
2 τ2τ3 = 0

τ 21 − (1− q) · t−
1
2 (τ2τ3 − τ 4τ̄5) = 0,

τ 21 − (1− q)q2θt · t−
1
2 τ2τ3 + (1− q)

(
1− q−2θt · t

)
q2θt · t−

1
2 τ4τ5 = 0,

τ 1τ1 − (1− q)q1/4+θ0+θt · t−
1
2 (τ 2τ3 − τ 4τ5) = 0,

τ 1τ1 − (1− q)q1/4−θ0+θt · t−
1
2 (τ2τ 3 − τ 4τ5) = 0.

3.2.7.3 q−PIII1 → q−PIII2
Before taking the limit, we comment on the E(1)

3 symmetry of the setup and our
choice of t = q−M1 . Once we have rewritten (x̂, p̂) → (x̂ − πζ ′1, p̂ − πζ ′1), the curve
will have asymptotic values as shown in 3.8, where M̃ = M + k, M̃1 = M1 + k.
There is a Coxeter group acting on the curve by exchanging asymptotic values. In
this particular case we have the very simple action

s̃1 : e
−πiM̃1+πζ′1 → eπiM1+πζ′1

s̃2 : e
πi(M̃−M̃1)−πζ′1 → e−πi(M−M1)−πζ′1

s̃3 : e
πi(M̃−2M̃1) → e−πiM̃
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and, further s4 = s−1
3 , which means s1 sends M̃1 → −M̃1. Therefore, at this point

a redefinition could have been made, had we opted for a different dictionary at the
beginning.

Here we are in a slightly different position as the limit M1 →M ′
1 − iΛ, ζ ′1 = −Λ

means

t = q−M ′
1e−2πΛ/k → 0

q−θt−θ0 = q
M′

1−M

2 e2πΛ/k → ∞

with t1 = tq−θt−θ0 = q−
M+M′

1
2 fixed. Let us denote by θ⋆ = θt − θ0 and define the

appropriate tau function as

τ III2 (θ⋆; s, σ, t) =
∑
n∈Z

snt(σ+n)2CIII2 (θ⋆;σ + n)ZIII2 (θ⋆;σ + n, t) ,

CIII2 (θ⋆;σ) = (1− q)−2σ2

(q− 1)−σ2

∏
ϵ=±Gq (1 + εσ − θ⋆)

Gq (1 + 2εσ)
,

ZIII2 (θ⋆;σ, t) =
∑
λ+,λ−

t|λ+|+|λ−|
∏

ϵ=±Nλϵ,ϕ

(
qϵσ−θ⋆

)
fλϵ(q

−ϵσ)∏
ϵ,ϵ′=±Nλϵ,λϵ′

(q(ϵ−ϵ′)σ)

where fλ(u) =
∏
c∈λ

(
−qlλ(c)+aϕ(c)+1u−1

)
. We define the scaling prefactors

X1(θ0, θt, σ) = (q− 1)−σ2

q−(θt+θ0)σ2
∏
ϵ=±

Gq (1− θ0 − θt + εσ)−1 ,

X2(θ0, θt, σ) = X1

(
θ0 +

1

2
, θt, σ +

1

2

)
, X3(θ0, θt, σ) = X1

(
θ0 −

1

2
, θt, σ − 1

2

)
,

X4(θ0, θt, σ) = X1

(
θ0, θt −

1

2
, σ +

1

2

)
, X5(θ0, θt, σ) = X1

(
θ0, θt +

1

2
, σ − 1

2

)
,

and the shifted tau functions:

τ III2
1 = τ III2 (θ⋆; s, σ, t)

τ III2
2 = τ III2

(
θ⋆ −

1

2
; s, σ +

1

2
, q−

1
2 t

)
τ III2
3 = τ III2

(
θ⋆ +

1

2
; s, σ − 1

2
, q

1
2 t

)
.

To perform the limit, we further put

s = š(q− 1)−2σq2(1−θ0−θt)σ
∏
ϵ=±

Γq (1− θ0 − θt + εσ)−ϵ

Then we have as Λ → ∞,

Xiτ
III1
i (θ0, θt; s, σ, t) → τ III2

i (θ⋆; š, σ, t), i = 1, 2, 3

X4τ
III1
4 (θ0, θt; s, σ, t) → τ III2

2 (θ⋆; š, σ, qt)

X5τ
III1
5 (θ0, θt; s, σ, t) → τ III2

3 (θ⋆; š, σ, q
−1t)

174 Fran Globlek



Magical matrix models from three dimensions

for the details of the calculation see the similar calculation of Proposition 3.1 of
[198]. The bilinear equations of q-PIII1 degenerate to

τ 21 − (1− q−θ⋆ · t)τ 1τ̄1 + (q− 1)
1
2 t

1
2 τ2τ3 = 0

τ 21 − (q− 1)
1
2 (1− q−θ⋆t)qθ⋆t−

1
2 (τ2τ3 + τ̄2τ 3) = 0

τ 1τ1 − (q− 1)
1
2q1/4t−

1
2 (τ 2τ3 − τ 3τ2) = 0

3.2.7.4 q−PIII2 → q−PIII3
In the final limit we have M ′

1 = −iΛ,Λ → ∞. Similarly as in the last step,
t = q−M/2e−πΛ/k → 0

q−θ⋆ = q−M/2e+πΛ/k → ∞
with t1 = tq−θ⋆ = q−M fixed. Let us define the appropriate tau function

τ III3 (s, σ, t) =
∑
n∈Z

snt(σ+n)2CIII3 (σ + n)ZIII3 (σ + n, t) ,

CIII3 (σ) = (1− q)−2σ2

(q− 1)−2σ2
∏
ϵ=±

1

Gq (1 + 2εσ)
,

ZIII3 (θ0, θt;σ, t) =
∑
λ+,λ−

t|λ+|+|λ−|
∏

ϵ=± fλϵ(q
−ϵσ)2∏

ϵ,ϵ′=±Nλϵ,λϵ′
(q(ϵ−ϵ′)σ)

To perform the limit, we first define the scaling prefactors

X1(θ⋆, σ) = (q− 1)−σ2

q−θ⋆σ2
∏
ϵ=±

Gq (1− θ⋆ + εσ)−1 ,

X2(θ⋆, σ) = C1

(
θ⋆ −

1

2
, σ +

1

2

)
, X3(θ⋆, σ) = C1

(
θ⋆ +

1

2
, , σ − 1

2

)
We define the shifted tau functions

τ III3
1 = τ III3(s, σ, t), τ III3

2 = s
1
2 τ III3

(
s, σ +

1

2
, t

)
.

To perform the limit, we define

s = š(q− 1)−2σq(1−2θ⋆)σ
∏
ϵ=±

Γq (1− θ⋆ + εσ)−ϵ

Then we have as Λ → ∞,
X1τ

III2
1 (θ⋆; s, σ, t) → τ III3

1 (š, σ, t)

X2τ
III2
2 (θ⋆; s, σ, t) → τ III2

2 (š, σ, t)

X3τ
III2
3 (θ⋆; s, σ, t) → τ III3

1

(
š, σ − 1

2
, t

)
= s

1
2 τ III2

2 (š, σ, t)

We find these satisfy the bilinear equations
τ 21 − τ 1τ̄1 + t

1
2 τ 2τ̄2 = 0

τ 22 − τ 2τ̄2 + t
1
2 τ 1τ̄1 = 0

The second equation is the degeneration of a linear combination of the first two q-
PIII2 equations. By Proposition 4.2 in [32] the functions τ̌i = (qt; q, q)∞τi, i = 1, 2
satisfy the usual q-PIII3 equations in tau form.
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3.2.8 Discussion and open questions
In this work we proposed that the grand partition function of the four node circu-
lar quiver superconformal Chern-Simons theory, see Fig.3.1, solves the q-deformed
Painlevé VI equation in τ -form [246, 268]. We showed that this theory describes the
full moduli space of SU(2) gauge theory on R4 × S1 with Nf = 4 by extending the
previous findings in [183, 184, 208, 212]. Let us notice that a solution to the above
q-difference system was previously proposed in terms of the Nekrasov-Okounkov
partition function of the gauge theory in [157]. While this solution is valid in a
short time expansion, which is perturbative in the gauge coupling, the Fredholm
determinant realisation arising from the quiver Chern-Simons theory can be nat-
urally expanded in the different regime of small κ, corresponding to the magnetic
phase of the gauge theory. We provide several explicit checks of this proposal at
low orders in κ. Our result therefore allows to study the five dimensional gauge
theory in terms of a matrix model in a regime which is otherwise difficult to access.
Moreover, the explicit results obtained in this work, motivated by TS/ST corre-
spondence, give a stronger check of the latter and enlarge the set of examples where
its rigorous realisation is verified.

Let us list in the following several questions left open by our analysis that it
would be interesting to further investigate.

• The matrix models discussed in this work can be used to study systematically
the dual prepotential of five dimensional SU(2) gauge theories with Nf ≤ 4.
The four dimensional limit can be also studied by introducing a suitable dual
scaling along the lines of [44].

• Generalise our matrix model to the case M 6= 0 in a representation which can
be analytically continued in M as well as in M1,M2.

• We provided analytic evidence of our conjecture by explicit checks at low
orders in κ and numerical checks at fixed moduli. It would be great to be
able to provide an analytic proof, either by induction in the power of κ or by
suitable Ward identities on the matrix model itself.

• The q-Painlevé VI τ -functions given as the Nekrasov-Okounkov partition func-
tion (3.1) and the one proposed in this work as the grand partition function
of Chern-Simons quiver (3.35) should be matched by fixing the ambiguity of
the C coefficients and relating the parameters κ and σ. The latter are linked
through the quantum mirror map whose explicit expression is proposed in [95],
which one could check by comparing the two expressions for the τ -function.

• The identification of the τ -function with the spectral determinant of the quan-
tum operator implies that the analysis of the zeroes of the first solves the
quantum spectrum of the latter [25, 44]. Therefore, the results obtained in
this work provide a method to quantize the integrable spin chain systems as-
sociated to 5d gauge theories with Nf ≤ 4. It would be interesting to pursue
this direction and compare the results with the ones that can be derived from
the Nekrasov-Shatashvili quantization method [228].

• Conversely, by extending the relevant q-difference equations to higher rank
simple gauge groups, it would be possible to use them as a tool to compute
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the multi-instantons expansions of matter gauge theories in five dimensions,
by extending the approach elaborated in [43] for the four dimensional case.

• q-PIII3 equation has been shown to be related to five dimensional Nakajima-
Yoshioka blowup equation [217] for pure Super Yang-Mills [31, 32]. It would be
interesting to extend such an analysis to the q-Painlevé equations correspond-
ing to the gauge theory in five dimensions coupled to massive hypermultiplets.

• One can also consider the mass deformed quiver Chern-Simons matter theories
[108, 144]. It was found that the grand partition function of the ABJM theory
with N = 6 preserving mass deformation satisfies a modified version of q-PIII3
[231]. It would be worth investigating whether the grand partition function
of the four node quiver theory with mass deformation also obey a modified
version of q-PVI. Conversely, one could also investigate the grand partition
function of the mass deformed CS quiver theories by exploiting the q-difference
bilinear equations, this in particular concerning the novel phase transition
which was discovered for the mass deformed ABJM theory in [141, 232, 233]
and which is expected to exist also for more general quiver Chern-Simons
matter theories with mass deformation [141, 230].

• Generalise the Chern-Simons matter quiver theory and identify its grand
canonical partition function with a Fredholm determinant of a suitable quan-
tum operator and a related integrable system.

• Investigate the insertion of observables and their rôle in these correspondences.
It would be particularly interesting to find the relevant observable of the three-
dimensional Chern-Simons quiver theory allowing to describe the full set of
initial conditions of q-Painlevé equations, or from the five dimensional gauge
theory viewpoint, the insertion of real co-dimension two defects. We expect
this to provide a description of the wave functions of the associated quantum
integrable systems.

• The relation between the S3 quiver matter Chern Simons partition functions
and the NO partition function of 5d gauge theories on R4 × S1 based on
bilinear q-Painlevé is suitable to be dimensionally lift to a relation between a
quiver supersymmetric gauge theory on S3 × S1 and N = 1 gauge theory on
R4×T 2. Let us notice in this perspective that the Fermi gas formalism applied
to the 3d partition function was crucial to the study of q-Painlevé system we
performed. It is indeed known that the Fermi gas formalism extends to the
Schur index of a certain class of four dimensional gauge theories [53, 54, 79]
where the relevant integrand is as elliptic lift of our (3.11). It is therefore
natural to expect that these Schur indices could be related to some gauge
theories on R4 × T 2 and to a related cluster integrable systems.

• A direct link between the three dimensional Chern-Simons quiver theories on
S3 and the gauge theories on R4×S1 involved in this game is to our knowledge
still missing. It is expected to arise from a chain of string theory dualities and
geometric transitions, that it would be worth exploring also with the aim of
a deeper understanding of the TS/ST correspondence.
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3.3 D-type quiver
The Fermi gas formalism of superconformal Chern-Simons theories on S3 reveals a
quantum curve to which the TS/ST/tau formalism can be applied. However, by
themselves, quivers of N = 3 d = 3 Chern-Simons theories with bifundamental
matter have an ADE classification [122]. ABJM, corresponding to local P1 × P1,
can be seen to fit in the An type. A natural question is whether the D or E type
quivers lead to interesting relations. This was the question my coauthor Nosaka-
san and I set out to answer, so we considered the simplest D type quiver, the
extended D4 quiver. We only considered its rank deformation, without turning on
any mass deformations or FI terms, in hope to connect with the q−Painlevé-like
theory corresponding to massless g = D4 = so(8) d = 5 N = 1 gauge theory.
In section 3.3.2 we also formally extended (or shrunk) the quiver to a D̂3 quiver,
which is computationally much more tractable. The starting point was the following
rank-deformation, which was found to be exactly computable:

U(N)0 U(N)0

U(2N)0

U(N +M)−2k U(N +M)2k

Figure 3.9: The rank-deformed D̂4 quiver.

The matrix model corresponding to this quiver Chern-Simons theory on S3 is, by
rules of supersymmetric localisation given in CITE,

Z =
1

(N !)2((N +M)!)2(2N)!

∫ (
dξ

2π

)N (
dξ′

2π

)N+M (
dz

2π

)2N (
dη

2π

)N (
dη′

2π

)N+M

e
− ik

2π

N+M∑
i=1

ξ′2i −η′2i

∏N
i<j

(
2 sinh

ξi−ξj
2

)2 (
2 sinh

ηi−ηj
2

)2∏N+M
i<j

(
2 sinh

ξ′i−ξ′j
2

)2 (
2 sinh

η′i−η′j
2

)2∏2N
i<j

(
2 sinh

zi−zj
2

)2
∏2N

i=1

∏N
p=1 2 cosh

ξp−zi
2

2 cosh ηp−zi
2

∏N+M
q=1 2 cosh

ξ′q−zi
2

2 cosh
η′q−zi

2
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There are several Cauchy-van der Monde identities we use:∏N
i<j 2 sinh

xi−xj

2

∏N+M
i<j 2 sinh

yi−yj
2∏N

i=1

∏N+M
j=1 2 cosh

xi−yj
2

= (−1)NM
∏
i

eM
xi−yi

2 det

(
1

2 cosh
xi−yj

2

eℓryj

)

= (−1)(
M
2
)
∏
i

eM
yi−xi

2 det

(
1

2 cosh
xi−yj

2

e−ℓryj

)
∏N

i<j 2 sinh
xi−xj

2

∏N+M
i<j 2 sinh

yi−yj
2∏N

i=1

∏N+M
j=1 2 sinh

xi−yj
2

= (−1)(
N
2
)
∏
i

eM
xi−yi

2 det

(
1

2 sinh
xi−yj

2

eℓryj

)

= (−1)(
N
2
)+(M

2
)
∏
i

eM
yi−xi

2 det

(
1

2 sinh
xi−yj

2

e−ℓryj

)

where `r =M + 1/2− r. We use all of them as to cancel all factors of e±Mx/2 with
x = ξ, z, η, that is, those with CS level zero. The result is

Z =
1

(N !)2((N +M)!)2(2N)!

∫ (
dξ

2π

)N (
dξ′

2π

)N+M (
dz

2π

)2N (
dη

2π

)N (
dη′

2π

)N+M

(
N+M∏
i=1

e−
ik
2π

ξ′2i −Mξ′ie
ik
2π

η′2i +Mη′i

)
det


[

1

2 sinh
ξi−ξ′

j
2

]
i,j:N×(N+M)[

eℓrξ
′
j

]
r,j:M×(N+M)


det


[

1

2 cosh
zi−xj

2

]
i,j:2N×(2N+M)[

eℓrxj
]
r,j:M×(2N+M)

 det


[

1

2 cosh
zi−yj

2

]
i,j:2N×(2N+M)[

e−ℓryj
]
r,j:M×(2N+M)


det


[

1

2 sinh
ηi−η′

j
2

]
i,j:N×(N+M)[

e−ℓrxj
]
r,j:M×(N+M)


where xi = (ξi, ξ

′
i), yi = (ηi, η

′
i). Next we use the Matsumoto-Moriyama-Andréief

formula [208, B.4],∫
dNx det

(
[fi(xj)]i,j:(N+M)×N [vis]i,s:(N+M)×M

)
det
(

[gi(xj)]i,j:(N+M ′)×N [wis]i,s:(N+M ′)×M ′

)

= N !(−1)MM ′
det

( [∫
dxfi(x)gj(x)

]
i,j:(N+M)×(N+M ′)

[vis]i,s:(N+M)×M

[wis]i,s:(N+M ′)×M ′ [0]M×M ′

)

so that defining the convolution kernel

L(x, y) =
1

2 cosh x
2

◦ 1

2 cosh y
2

=

∫
dz

2π

1

2 cosh x−z
2

1

2 cosh y−z
2
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we get

Z =
(−1)M

(N !)2((N +M)!)2

∫ (
dξ

2π

)N (
dξ′

2π

)N+M (
dη

2π

)N (
dη′

2π

)N+M

(
N+M∏
i=1

e−
ik
2π

ξ′2i −Mξ′ie
ik
2π

η′2i +Mη′i

)
det


[

1

2 sinh
ξi−ξ′

j
2

]
i,j:N×(N+M)[

eℓrξ
′
j

]
r,j:M×(N+M)



det

 L(ξi, ηj) L(ξi, η
′
j) eℓrξi

L(ξ′i, ηj) L(ξ′i, η
′
j) eℓrξ

′
i

eℓsηj eℓsη
′
j 0

 det


[

1

2 sinh
ηi−η′

j
2

]
i,j:N×(N+M)[

e−ℓrxj
]
r,j:M×(N+M)


Defining further

Y (x, y) =
e

ik
2π

x2+Mx

2 sin x−y
2

, Vr(x) = eℓrx, Wr(x) = e−ℓrx, W+
r (x) = e

ik
2π

x2+MxWr(x),

X(x, y) =
e−

ik
2π

y2−My

2 sin x−y
2

, V −
r (x) = e−

ik
2π

x2−MxVr(x)

lets us write further applications of the formula for the η′ and then for the ξ′

integrations as

Z =
(−1)M

(N !)2(N +M)!

∫ (
dξ

2π

)N (
dξ′

2π

)N+M (
dη

2π

)N
(

N+M∏
i=1

e−
ik
2π

ξ′2i −Mξ′i

)

det


[

1

2 sinh
ξi−ξ′

j
2

]
i,j:N×(N+M)[

eℓrξ
′
j

]
r,j:M×(N+M)

 det

 L(ξi, ηj) −(L ◦ Y )(ξi, ηj) (L ◦W+
s )(ξi) Vs(ξi)

L(ξ′i, ηj) −(L ◦ Y )(ξ′i, ηj) (L ◦W+
s )(ξ′i) Vs(ξ

′
i)

W t
r(ηj) −(W t

r ◦ Y )(ηj) W t
r ◦W+

s 0



=
(−1)M

(N !)2

∫ (
dξ

2π

)N (
dη

2π

)N

det

(
L(ξi, ηj) −(L ◦ Y )(ξi, ηj) (L ◦ W+

s )(ξi) Vs(ξi)

(X ◦ L)(ξi, ηj) −(X ◦ L ◦ Y )(ξi, ηj) (X ◦ L ◦ W+
s )(ξi) (X ◦ Vs)(ξi)

(V −t
r ◦ L)(ηj) −(V −t

r ◦ L ◦ Y )(ηj) V −t
r ◦ L ◦ W+

s V −t
r ◦ Vs

W t
r (ηj) −(W t

r ◦ Y )(ηj) W t
r ◦ W+

s 0

)

Next we consider a generalisation of the de Brujin identity,∫
dNx det

(
[fi(xj)]i,j:(2N+M)×N [gi(xj)]i,j:(2N+M)×N [vis]i,s:(2N+M)×M

)
= N !(−1)(

N
2
)+(M

2
)Pf

( [∫
dx(figj − fjgi)

]
i,j:(2N+M)×(2N+M)

[vis]i,s:(2N+M)×M

[−vsi]s,i:M×(2N+M) [0]M×M

)
to get rid of the η integration and get the final expression, where Ỹ = Y − Y t,

Z =
(−1)(

N
2
)+M(M+1)

2

N !

∫ (
dξ

2π

)N

Pf


(L ◦ Ỹ ◦ Lt)(ξi, ξj) (L ◦ Ỹ ◦ Lt ◦ Xt)(ξi, ξj) (L ◦ Ỹ ◦ Lt ◦ V −

s )(ξi) (L ◦ Ỹ ◦ Ws)(ξi) (L ◦ W+
s )(ξi) Vs(ξi)

(X ◦ L ◦ Ỹ ◦ Lt)(ξi, ξj) (X ◦ L ◦ Ỹ ◦ Lt ◦ Xt)(ξi, ξj) (X ◦ L ◦ Ỹ ◦ Lt ◦ V −
s )(ξi) (X ◦ L ◦ Ỹ ◦ Ws)(ξi) (X ◦ L ◦ W+

s )(ξi) (X ◦ Vs)(ξi)

(V −t
r ◦ L ◦ Ỹ ◦ Lt)(ξj) (V −t

r ◦ L ◦ Ỹ ◦ Lt ◦ Xt)(ξj) V −t
r ◦ L ◦ Ỹ ◦ Lt ◦ V −

s V −t
r ◦ L ◦ Ỹ ◦ Ws V −t

r ◦ L ◦ W+
s V −t

r ◦ Vs

(W t
r ◦ Ỹ ◦ Lt)(ξj) (W t

r ◦ Ỹ ◦ Lt ◦ Xt)(ξj) W t
r ◦ Ỹ ◦ Lt ◦ V −

s W t
r ◦ Ỹ ◦ Ws W t

r ◦ W+
s 0

−(W+t
r ◦ Lt)(ξj) −(W+t

r ◦ Lt ◦ Xt)(ξj) −W+t
r ◦ Lt ◦ V −

s −W+t
r ◦ Ws 0 0

−V t
r (ξj) −(V t

r ◦ Xt)(ξj) −V t
r ◦ V −

s 0 0 0


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To calculate the grand canonical potential, we use the following conjectural formula
for the rank-deformed extension of the Fredholm Pfaffian formula, found for M = 0
in [199, Proposition 2.1],√

det

[(
Ω 0
0 0

)
+

(
zP zV
−V t α

)]
=

N∞∑
k=0

(−1)(
k
2
)zk

∑
S⊂{1,2,...,N∞}

|S|=k

Pf

(
PS VS
−V t

S α

)

where

Ω =

(
[0]N∞×N∞ [δij]i,j:N∞×N∞

[−δij]i,j:N∞×N∞ [0]N∞×N∞

)
, P =

(
[Aij]i,j:N∞×N∞ [Bij]i,j:N∞×N∞

[Cij]i,j:N∞×N∞ [Dij]i,j:N∞×N∞

)
,

V =

(
[vis]i,s:N∞×2M

[wis]i,s:N∞×2M

)
, α = ([αrs]r,s:2M×2M) ,

the sum is over ordered pairs S = (n1, n2, ..., nk) with 1 6= n1 6= ... 6= nk 6= N∞
which determine

PS =

(
[Aai,aj ]i,j:k×k [Bai,aj ]i,j:k×k

[Cai,aj ]i,j:k×k [Dai,aj ]i,j:k×k

)
, VS =

(
[vai,s]i,s:k×2M

[wai,s]i,s:k×2M

)
.

The N∞ → ∞ limit implies that if we define the grand partition function as

Ξk,M(z) = (−1)
M(M+1)

2

∑
N≥0

zNZ(N)

then it becomes the Fredholm Pfaffian

Ξk,M(z) =√√√√√det

 zL ◦ Ỹ ◦ Lt
1 + zL ◦ Ỹ ◦ Lt ◦ Xt zL ◦ Ỹ ◦ Lt ◦ V −

s zL ◦ Ỹ ◦ Ws zL ◦ W+
s zVs

−1 + zX ◦ L ◦ Ỹ ◦ Lt zX ◦ L ◦ Ỹ ◦ Lt ◦ Xt zX ◦ L ◦ Ỹ ◦ Lt ◦ V −
s zX ◦ L ◦ Ỹ ◦ Ws zX ◦ L ◦ W+

s zX ◦ Vs

V −t
r ◦ L ◦ Ỹ ◦ Lt V −t

r ◦ L ◦ Ỹ ◦ Lt ◦ Xt V −t
r ◦ L ◦ Ỹ ◦ Lt ◦ V −

s V −t
r ◦ L ◦ Ỹ ◦ Ws V −t

r ◦ L ◦ W+
s V −t

r ◦ Vs

W t
r ◦ Ỹ ◦ Lt W t

r ◦ Ỹ ◦ Lt ◦ Xt W t
r ◦ Ỹ ◦ Lt ◦ V −

s W t
r ◦ Ỹ ◦ Ws W t

r ◦ W+
s 0

−W+t
r ◦ Lt −W+t

r ◦ Lt ◦ Xt −W+t
r ◦ Lt ◦ V −

s −W+t
r ◦ Ws 0 0

−V t
r −V t

r ◦ Xt −V t
r ◦ V −

s 0 0 0


Standard row and column operations we use to simplify this determinant are as
follows, with X̃ = X −X t:

1. (3rd column) 7→ (3rd column) − (1st column)◦V −
s

2. (2nd row) 7→ (2nd row) − X◦(1st row)

3. (2nd column) 7→ (2nd column) − (1st column)◦X t

4. (1st row) 7→ (1st row) + zL ◦ Ỹ ◦ Lt◦(2nd row)

5. (3rd column) 7→ (3rd column) − (2nd column)◦(1− zL ◦ Ỹ ◦ Lt ◦ X̃)−1 ◦ V −
s

6. (4th column) 7→ (4th column) − (2nd column)◦(1− zL ◦ Ỹ ◦ Lt ◦ X̃)−1 ◦Ws

7. (5th column) 7→ (5th column) − (2nd column)◦(1− zL ◦ Ỹ ◦Lt ◦ X̃)−1 ◦W+
s

8. (6th column) 7→ (6th column) − (2nd column)◦(1− zL ◦ Ỹ ◦ Lt ◦ X̃)−1 ◦ Vs
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They lead to the open-string factorised expression

Ξk,M(z) =
√

det(1+ zρ)
√
det(H)

where ρ = −L ◦ Ỹ ◦ Lt ◦ X̃ is the M -independent inverse spectral curve and H is a
4M × 4M matrix composed of 16 M ×M blocks [Hij]i,j:4×4. If we define

L1(z) = (1− zL ◦ Ỹ ◦ Lt ◦ X̃)−1, L2(z) = (1− zỸ ◦ Lt ◦ X̃ ◦ L)−1

L3(z) = (1− zL ◦ X̃ ◦ Lt ◦ Ỹ )−1, L4(z) = (1− zX̃ ◦ L ◦ ỹ ◦ Lt)−1

then we can write 
H11 H12 H13 H14

H21 H22 H23 H24

H31 H32 H33 H34

H41 H42 H43 H44

 =

(
V −t
r ◦ L1(z) ◦ L ◦ Ỹ ◦ Lt ◦ V −

s V −t
r ◦ L1(z) ◦ L ◦ Ỹ ◦ Ws V −t

r ◦ L1(z) ◦ L ◦ W+
s V −t

r ◦ L1(z) ◦ Vs

W t
r ◦ L2(z) ◦ Ỹ ◦ Lt ◦ V −

s W t
r ◦ L2(z) ◦ Ỹ ◦ Ws W t

r ◦ L2(z) ◦ W+
s zW t

r ◦ L2(z) ◦ Ỹ ◦ Lt ◦ X̃ ◦ Vs

−W+t
r ◦ L3(z) ◦ Lt ◦ V −

s −W+t
r ◦ L3(z) ◦ Ws −zW+t

r ◦ L3(z) ◦ Lt ◦ X̃ ◦ L ◦ W+
s −zW+t

r ◦ L3(z) ◦ Lt ◦ X̃ ◦ Vs

−V t
r ◦ L4(z) ◦ V −

s −zV t
r ◦ L4(z) ◦ X̃ ◦ L ◦ Ỹ ◦ Ws −zV t

r ◦ L4(z) ◦ X̃ ◦ L ◦ W+
s −zV t

r ◦ L4(z) ◦ X̃ ◦ Vs

)

3.3.1 Quantum mechanics and divergences
It’s convenient at this point to rescale the integration variables x 7→ x/k, which
rescales L, X̃, Ỹ by 1/k and Vr, V

−
r ,Ws,W

+
s by 1/

√
k. We introduce quantum me-

chanical notation with canonically conjugate [q̂, p̂] = 2πik and label position eigen-
states as ordinary kets q̂ |x〉 = x |x〉 and momentum eigenstates as double bracketed
kets p̂|x〉〉 = x|x〉〉 as in (3.56). Then

L(x, y) = 〈x| (2 cosh p̂
2
)−2 |y〉 ,

X̃(x, y) = 〈x|

{
tanh p̂

2

2i
, e−

i
2πk

q̂2−M
k
q̂

}
|y〉 , Ỹ (x, y) = 〈x|

{
tanh p̂

2

2i
, e

i
2πk

q̂2+M
k
q̂

}
|y〉

which use

lim
ϵ→0

∫
dp

2πi
tanh

p

2
eixp−ϵp =

1

sinhπx

and

Vr(x) = 〈x| − 2πi`r〉〉 V t
r (x) = 〈〈2πi`r|x〉

V −
r (x) = 〈x|e−

i
2πk

q̂2−M
k
q̂| − 2πi`r〉〉 V −t

r (x) = 〈〈2πi`r|e−
i

2πk
q̂2−M

k
q̂|x〉

Ws(x) = 〈x|2πi`s〉〉 W t
s(x) = 〈〈−2πi`s|x〉

W+
s (x) = 〈x|e

i
2πk

q̂2+M
k
q̂|2πi`s〉〉 W+t

s (x) = 〈〈−2πi`s|e
i

2πk
q̂2+M

k
q̂|x〉

We can reformulate the block sub-matrices Hij in terms of 1d quantum mechanics.
However, we find that, as written, some of the elements diverge. Consider

H12 = 〈〈2πi`r|e−
i

2πk
q̂2−M

k
q̂

(
1− z

(
2 cosh

p̂

2

)−2
{
tanh p̂

2

2i
, e

i
2πk

q̂2+M
k
q̂

}
(
2 cosh

p̂

2

)−2
{
tanh p̂

2

2i
, e−

i
2πk

q̂2−M
k
q̂

})−1(
2 cosh

p̂

2

)−2
{
tanh p̂

2

2i
, e

i
2πk

q̂2+M
k
q̂

}
|2πi`s〉〉
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At the very end of this expression, from the anticommutator we have

tanh
p̂

2
|2πi`s〉〉 = tanh πi

(
M +

1

2
− s

)
|2πi`s〉〉

which diverges. However, we have found that the divergences of the second and
fourth columns respectively are proportional the first and third column, and verba-
tim with the rows. This is a case-by-case check. Therefore, the following elementary
operations remove the divergences:

1. (2nd column) 7→ (2nd column) + i
2
tanhπi`s (3rd column)

2. (4nd column) 7→ (4nd column) − iz
2
tanhπi`s (1st column)

3. (2nd row) 7→ (2nd row) + i
2
tanhπi`r (3rd row)

4. (4nd row) 7→ (4nd row) − iz
2
tanhπi`r (1st row)

The blocks H11, H13, H31, H33 stayed the same. Let us display some of new the
blocks of the transformed matrix H.

H12 = −V −t
r ◦ L1(z) ◦ L ◦ Y t ◦Ws,

H14 = −V −t
r ◦ Vs + zV −t

r ◦ L1(z) ◦ L ◦ Ỹ ◦ Lt ◦X ◦ Vs
H22 = −zW t

r ◦ Y ◦ L2(z) ◦ LtX̃ ◦ L ◦ Y t ◦Ws

H24 = zW t
r ◦ Y ◦ L2(z) ◦ Lt ◦X ◦ Vs

In fact, these are enough to determine all the others. Using the antisymmetry of X̃
and Ỹ , we can show that in the new matrix,

(Hij)rs = −(Hji)sr

Similarly, using Vr(−x)∗ = Wr(x), V −
r (−x)∗ = W+

r (x), X(−x,−y)∗ = Y t(x, y),
Y (−x,−y)∗ = X t(x, y) and L(−x,−y)∗ = L(x, y) we have elementwise

H33 = zH∗
11, H34 = zH∗

12, H31 = −H∗
13, H32 = −H14∗

H42 = −H∗
24, H44 = zH∗

22

This means H11, H12, H13, H14, H22, H24 are enough to determine the others.
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3.3.2 D̂3 quiver exact calculation
In fact, we can observe that everything up to now holds for the D̂r quivers

U(N)0 U(N)0

U(2N)0 U(2N)0 · · · U(2N)0 U(2N)0

U(N +M)−2k U(N +M)−k

with r − 3 U(2N)0 nodes in the middle. The difference is that

L(x, y) =

∫
dr−3w

(4πk)r−3

1

cosh x−w1

2k

1

cosh w1−w2

2k

· · · 1

cosh wr−3−y
2k

The property L(−x,−y)∗ = L(x, y) still holds. In the case of higher rank q-Painlevé
equations, D3 satisfied the same equation as Dr≥4. Therefore, we have tried com-
puting the r = 3, D̂3 model. We will comment on its 3d interpretation later. At
the level of the exact computation, the difference is only that now

L(x, y) =
1

2k cosh x−y
2k

= 〈x| 1

2 cosh p̂
2

|y〉

This makes the D̂3 model vastly simpler to compute.

3.3.2.1 M = 0

The one particle density matrix for the D̂r quiver is ρ = −L ◦ Ỹ ◦ Lt ◦ X̃, which
becomes for r = 3 in the 1d quantum mechanics notation the operator

ρ̂ =
1

2 cosh p̂
2

tanh p̂
2
+ tanh p̂+2q̂

2

2

1

2 cosh p̂+2q̂
2

tanh p̂
2
+ tanh p̂+2q̂

2

2

Given the structure of ρ̂, it makes sense to introduce a different basis of canonically
conjugate position and momentum operators,

Q̂ = p̂+ 2q̂, P̂ = p̂, [Q̂, P̂ ] = 2πiκ, κ = 2k

in terms of which ρ̂ is similar to

ρ̂ ∼
√

1

2 cosh Q̂
2

tanh Q̂
2
+ tanh P̂

2

2

1

2 cosh P̂
2

tanh Q̂
2
+ tanh Q̂

2

2

√
1

2 cosh Q̂
2

Using the following Fourier transform formulas for r = 0, 1, 2

Q 〈x| 1

2 cosh P̂
2

(
tanh P̂

2

2

)r

|y〉Q =
1

2κ cosh x−y
2κ

(
δr0 + δr1

i(x− y)

2πκ
+ δr3

[
1

8
− 1

2

(
x− y

2πk

)2
])
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we can express the matrix elements as

Q 〈x| ρ̂ |y〉Q =
E(x)E(y)

e
x
κ + e

y
κ

1

κ

r∑
i=1

fi(x)gi(y)

where

E(x) =
e

x
2κ√

2 cosh x
2

f1 =
1

16
+
ix tanh x

2

4πκ
− 1

2

( x

2πκ

)2
, g1(x) = 1

f2(x) = 1, g2(x) =
1

16
−
ix tanh x

2

4πκ
− 1

2

( x

2πκ

)2
f3(x) =

tanh x
2

2
+

ix

2πκ
, g3(x) =

tanh x
2

2
− ix

2πκ
,

This enables us to use the TWYP formalism mentioned in the introduction. Namely,
the previous expression is equivalent to

e
Q̂
κ ρ̂+ ρ̂e

Q̂
κ =

3∑
i=1

fi(Q̂)E(Q̂)|0〉〉P P 〈〈0|E(Q̂)gi(Q̂)

and can be seen to lead to a recursive expression for ρ̂n, whose traces are needed to
compute the spectral determinant,

e
Q̂
κ ρ̂n + (−1)nρ̂ne

Q̂
κ =

n−1∑
l=0

(−1)lρ̂l

[
3∑

i=1

fi(Q̂)E(Q̂)|0〉〉P P 〈〈0|E(Q̂)gi(Q̂)

]
ρ̂n−1−l

which lets us express the matrix element in the Q̂ basis as

Q 〈x| ρ̂n |y〉Q =
E(x)E(y)

e
x
κ − (−1)ne

y
k

n−1∑
l=0

3∑
i=1

(−1)lφ
(i)
l (x)ψ

(i)
n−1−l(y),

φ
(i)
l (x) =

1

E(x)
Q 〈x| ρ̂lfi(Q̂)E(Q̂)|0〉〉P , φ

(i)
l (x) =

1

E(x)
P 〈〈0|E(Q̂)gi(Q̂)ρ̂l |x〉Q

It’s obvious we have the recursion formula

φ
(i)
l (x) =

∫
dy

2π

E(y)

E(x)
Q 〈x| ρ̂ |y〉Q φ

(i)
l−1(y)

The substitution u = e
x
κ = e

x
2k , v = e

y
2k lets us rewrite this in terms of rational

functions. Explicitly,

φ
(i)
l (u) =

∫ ∞

0

dy

2π

vk

(u+ v)(v2k + 1)

[
1

8
+

(u2k − 1)(v2k − 1)

4(u2k + 1)(v2k + 1
+

i

4π

(
u2k − 1

u2k + 1
+
v2k − 1

v2k + 1

)
log u

− 1

8π2
(log u)2 +

[
− i

4π

(
u2k − 1

u2k + 1
+
v2k − 1

v2k + 1

)
+

log u

4π2

]
log v − 1

8π2
(log v)2

]
φ
(i)
l−1(v)
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Expanding φ(i)
l (u) as

φ
(i)
l (u) =

∑
j≥0

φ
(i),j
l (u)(log u)j

where φ
(i),j
l (u) are rational functions of their argument lets us use the following

formula valid for a rational function f(v) and j ≥ 0,∫ ∞

0

dvf(v)(log v)j = −(2πi)j

j + 1

∮
γ

dvf(v)Bj+1

(
log+ v

2πi

)
= −(2πi)j+1

j + 1

∑
w:poles in C\R≥0

Resv=w f(v)Bj+1

(
log+ v

2πi

)
where γ ∈ C is a keyhole contour avoiding the positive reals and Bj(x) are Bernoulli
polynomials. Then

φ
(i)
l (u) =

∑
j≥0

∑
w:poles in C\R≥0

Resv=w
1

2π

vk

(u+ v)(v2k + 1)
φ
(i),j
l−1 (v)[

− (2πi)j+1

j + 1
Bj+1

(
log+ v

2πi

)(
1

8
+

(u2k − 1)(v2k − 1)

4(u2k + 1)(v2k + 1
+

i

4π

(
u2k − 1

u2k + 1
+
v2k − 1

v2k + 1

)
log u− 1

8π2
(log u)2

)

− (2πi)j+2

j + 2
Bj+2

(
log+ v

2πi

)[
− i

4π

(
u2k − 1

u2k + 1
+
v2k − 1

v2k + 1

)
+

log u

4π2

]
− (2πi)j+3

j + 3
Bj+3

(
log+ v

2πi

)(
− 1

8π2

)]

The poles themselves are v = −u and v = e
πi
k
(m−1/2) for m = 1, 2, ..., 2k. ψi

l(u) are
then

ψ
(1)
l (u) = (φ

(2)
l )∗, ψ

(2)
l (u) = (φ

(1)
l )∗, ψ

(3)
l (u) = (φ

(3)
l )∗

Then the traces may be calculated as

tr ρ̂n =


k
2π

∫∞
0

du uk−1

u2k+1

n−1∑
l=0

(−1)l
3∑

i=1

φ
(i)
l (u)ψ

(i)
n−1−l(u), n odd

k
2π

∫∞
0

du uk

u2k+1

n−1∑
l=0

(−1)l
3∑

i=1

dϕ
(i)
l (u)

du
ψ

(i)
n−1−l(u), n even

=


∑
j≥0

∑
w:poles in C\R≥0

Res
u=w

k
2π

uk−1

u2k+1
Φj

n(u)
(
− (2πi)j+1

j+1

)
Bj+1

(
log+ u
2πi

)
, n odd∑

j≥0

∑
w:poles in C\R≥0

Res
u=w

k
2π

uk

u2k+1
Φ̃j

n(u)
(
− (2πi)j+1

j+1

)
Bj+1

(
log+ u
2πi

)
, n even

where Φj
n(u), Φ̃j

n(u) are the rational functions defined from the expansions
n−1∑
l=0

3∑
i=1

φ
(i)
l (u)ψ

(i)
n−1−l(u) =

∑
j≥0

Φj
n(u)(log u)

j

n−1∑
l=0

(−1)l
3∑

i=1

dφ
(i)
l (u)

du
ψ

(i)
n−1−l(u) =

∑
j≥0

Φ̃j
n(u)(log u)

j
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For k = 1 we obtain the following spectral traces:

tr ρ̂ =
1

32
, tr ρ̂2 =

3

2048
− 1

96π2
, tr ρ̂3 = − 35

524288
+

11

15360π2
,

tr ρ̂4 = − 105

16777216
+

323

5160960π2
, tr ρ̂5 =

3063808059358336π2 + 5733585π4

28701118955520π4
,

tr ρ̂6 =
13971

549755813888
− 341497159

1269625887129600π2
+

1

5529600π4

tr ρ̂7 =
2298257971609600 + 16378220515098624π2 + 30139135715681280π43223083922183125π6

4910354586227158548480000π6

We can calculate for higher k as well. This lets us read off the partition functions
Zk=1,M=0(N). For the k = 1, 2, 3, the first three read,

Z1,0(1) =
1

64
, Z1,0(2) = − 1

4096
+

1

384π2
,

Z1,0(3) = − 17

1048576
+

59

368640π2

Z2,0(1) =
1

128
, Z2,0(2) =

35

262144
− 1

768π2
,

Z2,0(3) =
313

33554432
− 41

1572864π
− 1

98304π2

Z3,0(1) =
1

196
, Z3,0(2) = − 883

10077696
+

1

1152π2
,

Z3,0(3) = − 7172861

1671768834048
+

29

1574640
√
3π

+
89

9953280π2

Already for small N , plotting these against the semiclassical expansion

Zpert.
k,0 (N) = eAkC

−1/3
k Ai

[
C

−1/3
k (N −Bk)

]
,

Ck =
1

3π2k
, Bk =

π2Ck

3
− 5

18k
+
k

4
, Ak =

AABJM
6k + 9AABJM

2k

2

already shows similar behaviour. This is a good check of correctness of our calcu-
lation.
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Figure 3.10: Plots of the D̂3-quiver model against the semiclassical expansions for
k = 1, 2, 3.

3.3.2.2 Equivalence to (3, 1)2k model

Consider again the partition function for the M = 0 D̂3 quiver, which we can get
by substituting back L(x, y) = (2 cosh x−y

2
)−1,

Zk,M=0(N) =
1

(N !)K

∫ (
dξ

2π

)N ∫ (
dξ′

2π

)N ∫ (
dη

2π

)N ∫ (
dη′

2π

)N∏
i

e
ik
2π

(η′2i −ξ′2i )

N

det
i,j

(
1

2 sinh
ηi−η′j

2

)
2N

det
i,j

(
1

2 cosh
xi−yj

2

)
N

det
i,j

(
1

2 sinh
ξi−ξ′j

2

)

=
1

(N !)K

∫ (
dξ

2π

)N ∫ (
dξ′

2π

)N ∫ (
dη

2π

)N ∫ (
dη′

2π

)N∏
i

e
ik
2π

(η′2i −ξ′2i )

∏
i<j

(
2 sinh

ξi−ξj
2

)2 (
2 sinh

ξ′i−ξ′j
2

)2 (
2 sinh

ηi−ηj
2

)2 (
2 sinh

η′i−η′j
2

)2
∏

i,j 2 cosh
ξi−ηj

2
2 cosh

ξi−η′j
2

2 cosh
ξ′i−ηj

2
2 cosh

ξ′i−η′j
2

=
1

N !

∫ (
dξ

2π

)N

det
i,j

〈ξi|
1

2 cosh p̂
2

1

2 cosh p̂
2

e−
i

2πk
q̂2 1

2 cosh p̂
2

e
i

2πk
q̂2 1

2 cosh p̂
2

|ξj〉

where |ξ〉 are q̂ eigenstates. This expression coincides with the partition function
of the (3, 1) model of N = 4 circular quiver superconformal Chern-Simons theories
with level 2k. The exact values of Zk(N) were already computed for this model in
[129]. They agree with our results.

This leads to an interesting conjecture, as the equivalence of partition functions
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means

∑
N≥0

zNZD̂3
k,0(N) =

√√√√det

(
1 + z

1

2 cosh Q̂
2

tanh Q̂
2
+ tanh P̂

2

2

1

2 cosh P̂
2

tanh Q̂
2
+ tanh P̂

2

2

)

∑
N≥0

zNZ
(3,1)
2k (N) = det

(
1 + z

1

(2 cosh Q̂
2
)3

1

2 cosh P̂
2

)

are the same, which seems nontrivial not only from the point of view of operator
theory but also from a geometric standpoint, as the latter operator can be easily
inverted and be expressed in terms of a Newton polygon. For the former, this
geometric side is unclear.

3.3.2.3 M > 0

First, for N = 0 we can easily obtain

Zk,M(0) = (−1)M det

(
V −t
r ◦ L ◦W+

s V −t
r ◦ Vs

W t
r ◦W+

s 0

)

= (−1)M det

 (−1)Me−
πi
2k

(ℓ2r−ℓ2s)

4k cos
π(ℓr−ℓs)

2k

(2ki)−1/2e−
πi
2k

(ℓr+ℓs−M)2

(2k/i)−1/2e
πi
2k

(ℓr+ℓs−M)2 0


Interestingly, this matrix satisfies Zk,M(0) = Zk,2k−M(0), and it vanishes forM > 2k.
It would be interesting to see whether this "Hanany-Witten duality" and "s-rule"
hold for the full theory. For both M,N > 0, we have to calculate both the spectral
traces tr ρ̂n as well as the block-matrix corrections. Luckily, it turns out we are
firmly in the open-string formalism, as ρ̂(M) ∼ ρ̂(0). To see this, write

ρ̂(M) = − 1

2 cosh P̂
2

{
tanh P̂

2

2i
, e

i
4πκ

Q̂2+M
κ
Q̂

}
1

2 cosh P̂
2

{
tanh P̂

2

2i
, e−

i
4πκ

Q̂2−M
κ
Q̂

}

=
1

2 cosh P̂
2

[
tanh P̂

2

2
e

i
4πκ

Q̂2+M
κ
Q̂ 1

2 cosh P̂
2

e−
i

4πκ
Q̂2−M

κ
Q̂ tanh

P̂
2

i

+
tanh P̂

2

2
e

i
4πκ

Q̂2+M
κ
Q̂ 1

2 cosh P̂
2

tanh P̂
2

i
e−

i
4πκ

Q̂2−M
κ
Q̂

+e
i

4πκ
Q̂2+M

κ
Q̂ 1

2 cosh P̂
2

tanh P̂
2

2
e−

i
4πκ

Q̂2−M
κ
Q̂ tanh

P̂
2

i

+e
i

4πκ
Q̂2+M

κ
Q̂ 1

2 cosh P̂
2

(
tanh P̂

2

i

)2

e−
i

4πκ
Q̂2−M

κ
Q̂

]

Then the similarity transformation ρ̂(M) 7→ e−
i

4πκ
P̂ 2
e−

i
4πκ

Q̂2
ρ̂(M)e

i
4πκ

Q̂2
e

i
4πκ

P̂ 2 gets
rid of some of the e± i

4πκ
Q̂2 factors, and this along with the identity

e−
i

4πκ
P̂ 2

e−
i

4πκ
Q̂2

f(P̂ )e
i

4πκ
Q̂2

e
i

4πκ
P̂ 2

= f(Q̂)
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yields

ρ̂(M) ∼ 1

2 cosh Q̂
2

[
tanh Q̂

2

2
e

M
κ
Q̂ 1

2 cosh P̂
2

e−
M
κ
Q̂ tanh

Q̂
2

2
+

tanh Q̂
2

2
e

M
κ
Q̂ 1

2 cosh P̂
2

tanh P̂
2

2
e−

M
κ
Q̂

+e
M
κ
Q̂ 1

2 cosh P̂
2

tanh P̂
2

2
e−

M
κ
Q̂ tanh

Q̂
2

2
+ e

M
κ
Q̂ 1

2 cosh P̂
2

(
tanh P̂

2

2

)2

e−
M
κ
Q̂

]

= e
M
κ
Q̂ 1

2 cosh Q̂
2

tanh Q̂
2
+ tanh P̂

2

2

1

2 cosh P̂
2

tanh Q̂
2
+ tanh P̂

2

2
e−

M
κ
Q̂

where the i-periodicity of the hyperbolic functions was used. Therefore, we do not
need to calculate the traces again, as tr ρ̂(M)n = tr ρ̂(M = 0)n.

To calculate the block-matrix correction, recursive methods can be used. First,
note that due to the presence of poles at πim, m ∈ Z, the following formulas hold
for M ≥ 0, as can be seen by using a rectangular contour,

e−
M
κ
x 〈x| 1

2 cosh p̂
2

(
tanh p̂

2

2

)i

|y〉 e
M
κ
y = (−1)M 〈x| 1

2 cosh p̂
2

|y〉+∆i(x, y)

where we need only

∆0(x, y) =
1

κ

M∑
m=1

(−1)m−1e−
ℓm
κ

(x−y), ∆1(x, y) =
i(x− y)

2πκ
∆0(x, y)

∆2(x, y) =

(
1

8
− 1

2

(
x− y

2πκ

)2
)
∆0(x, y)

Whereas for the opposite sign, writing also M ≤ 0,

e
M
κ
x 〈x| 1

2 cosh p̂
2

(
tanh p̂

2

2

)i

|y〉 e−
M
κ
y = (−1)M 〈x| 1

2 cosh p̂
2

|y〉+ ∆̃i(x, y)

with

∆̃0(x, y) =
1

κ

M∑
m=1

(−1)m−1e
ℓm
κ

(x−y), ∆̃1(x, y) =
i(x− y)

2πκ
∆̃0(x, y)

∆̃2(x, y) =

(
1

8
− 1

2

(
x− y

2πκ

)2
)
∆̃0(x, y)
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Then, expanding the first column,

(H11)rs = V −t
r ◦ L ◦ Ỹ ◦

(
1− zLt ◦ X̃ ◦ L ◦ Ỹ

)−1

◦ Lt ◦ V −
s =

∑
n≥0

zn(H11)rs,n

(H21)rs = W t
r ◦ Y ◦

(
1− zLt ◦ X̃ ◦ L ◦ Ỹ

)−1

◦ Lt ◦ V −
s =

∑
n≥0

zn(H21)rs,n

(H31)rs = −W+t
r ◦ Y ◦

(
1− zLt ◦ X̃ ◦ L ◦ Ỹ

)−1

◦ Lt ◦ V −
s =

∑
n≥0

zn(H31)rs,n

(H41)rs = −V t
r ◦ V −

s + zV t
r ◦X t ◦ L ◦ Ỹ ◦

(
1− zLt ◦ X̃ ◦ L ◦ Ỹ

)−1

◦ Lt ◦ V −
s

= −V t
r ◦ V −

s +
∑
n≥0

zn+1(H41)rs,n

we find we can write

(H11)rs,n = −
√
i

2π
e−

πi
κ
ℓ2r−πi

κ
ℓr

∫
du

[
(−1)M

vr + u

i(log vr − log u)

2π
+ κ∆1(−2πi`r, x)e

πi
κ
ℓr− x

2κ

+

(
(−1)M

vr + u
+ κ∆0(−2πi`r, x)e

πi
κ
ℓr− x

2κ

)(
−1

2

u2k − 1

u2k + 1

)]
λ(1)s,n(u)

(H21)rs,n =
i
√
κ

2π
e

πi
κ
(M−ℓr)2

∫
du

1

2

u2k − 1

u2k + 1
uM−ℓr− 1

2λ(1)s,n(u)

(H31)rs,n = −
√
κ

2π
e

πi
κ
(M−ℓr)2

∫
duuM−ℓr− 1

2λ(1)s,n(u)

(H41)rs,n =
1

2π
√
i
e−

πi
κ
ℓ2r−πi

κ
ℓr

∫
du

[
(−1)M

vr + u

(
1

8
− (log vr − log u)2

8π2

)
+ κ∆2(−2πi`r, x)e

πi
κ
ℓr− x

2κ

+

(
(−1)M

vr + u

i(log vr − log u)

2π
+ κ∆1(−2πi`r, x)e

πi
κ
ℓr− x

2κ

)(
−1

2

u2k − 1

u2k + 1

)]
λ(1)s,n(u)

where u = e
x
κ , vr = e−

2πi
κ

ℓr , and the coefficients λ(1)s,n(u) are given by the following
recursion relation:

λ
(1)
s,0(u) =

1√
κ
e−

πi
κ
(M−ℓs)2

uk

u2k + 1
uℓs−M− 1

2

λ(1)s,n(u) =
1

2π

∫
dv

uk

u2k + 1

[
− 1

2

u2k − 1

u2k + 1

1

2

v2k − 1

v2k + 1

(
(−1)M

u+ v
+ κ∆0(x, y)e

−x+y
2κ

)
+

1

2

(
u2k − 1

u2k + 1
+
v2k − 1

v2k + 1

)(
(−1)M

u+ v

i(log u− log v)

2π
+ κ∆1(x, y)e

−x+y
2κ

)
− (−1)M

u+ v

(
1

8
− (log u− log v)2

8π2

)
+ κ∆2(x, y)e

−x+y
2κ

]
λ
(1)
s,n−1(v)
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where v = e
y
κ . The second column is

(H12)rs = −V −t
r ◦

(
1− zL ◦ Ỹ ◦ Lt ◦ X̃

)−1

◦ L ◦ Y t ◦Ws =
∑
n≥0

zn(H12)rs,n

(H22)rs = −zWr ◦ Y ◦ Lt ◦
(
1− zL ◦ Y ◦ Lt ◦ X̃

)−1

◦ L ◦ Y t ◦Ws =
∑
n≥0

zn+1(H22)rs,n

(H32)rs = −W+t
r ◦Ws + zW+t

r ◦ Lt ◦ X̃ ◦
(
1− zL ◦ Y ◦ Lt ◦ X̃

)−1

◦ L ◦ Y t ◦Ws

= −W+t
r ◦Ws +

∑
n≥0

zn+1(H32)rs,n

(H42)rs = −zV t
r ◦X t ◦

(
1− zL ◦ Y ◦ Lt ◦ X̃

)−1

◦ L ◦ Y t ◦Ws =
∑
n≥0

zn+1(H42)rs,n

and yields the coefficients

(H12)rs,n = −
√
κ

2π
e−

πi
κ
(ℓr−M)2

∫
duuℓr−M− 1

2λ(2)s,n(u)

(H22)rs,n =
1

2π
√
−i
e

πi
κ
ℓ2r−πi

κ
ℓr

∫
du

[
(−1)M

vr + u

(
1

8
− (log vr − log u)2

8π2

)
+ κ∆̃2(−2πi`r, x)e

πi
κ
ℓr− x

2κ

+

(
(−1)M

vr + u

i(log vr − log u)

2π
+ κ∆̃1(−2πi`r, x)e

πi
κ
ℓr− x

2κ

)(
1

2

u2k − 1

u2k + 1

)]
λ(2)s,n(u)

(H32)rs,n =

√
−i
2π

e
πi
κ
ℓ2r−πi

κ
ℓr

∫
du

[
(−1)M

vr + u

i(log vr − log u)

2π
+ κ∆̃1(−2πi`r, x)e

πi
κ
ℓr− x

2κ

+

(
(−1)M

vr + u
+ κ∆̃0(−2πi`r, x)e

πi
κ
ℓr− x

2κ

)(
1

2

u2k − 1

u2k + 1

)]
λ(2)s,n(u)

(H42)rs,n = −i
√
κ

2π
e−

πi
κ
(ℓr−M)2

∫
du

1

2

u2k − 1

u2k + 1
uℓr−M− 1

2λ(2)s,n(u)

where λ(2)s,n(u) satisfy the recursion relation

λ
(2)
s,0(u) =

1√
κ
e−

πi
κ
(ℓs−M)2 uk

u2k + 1

(
i

2

u2k − 1

u2k + 1

)
u−ℓs+M− 1

2

λ(2)s,n(u) =
1

2π

∫
dv

(
− uk

u2k + 1

)[
1

2

u2k − 1

u2k + 1

1

2

v2k − 1

v2k + 1

(
(−1)M

u+ v
+ κ∆̃0(x, y)e

−x+y
2κ

)

+
1

2

(
u2k − 1

u2k + 1
+
v2k − 1

v2k + 1

)(
(−1)M

u+ v

i(log u− log v)

2π
+ κ∆̃1(x, y)e

−x+y
2κ

)
+

(−1)M

u+ v

(
1

8
− (log u− log v)2

8π2

)
+ κ∆̃2(x, y)e

−x+y
2κ

]
λ
(2)
s,n−1(v)
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The third column is given by

(H13)rs = −V −t
r ◦

(
1− zL ◦ Ỹ ◦ Lt ◦ X̃

)−1

◦ L ◦W+
s =

∑
n≥0

zn(H13)rs,n

(H23)rs = W t
r ◦W+

s + zW t
r ◦ Y ◦

(
1− zL ◦ Ỹ ◦ Lt ◦ X̃

)−1

◦ L ◦W t
s

= W t
r ◦W+

s +
∑
n≥0

zn+1(H23)rs,n

(H33)rs = −zW+t
r ◦

(
1− zL ◦ Ỹ ◦ Lt ◦ X̃

)−1

◦ L ◦W+
s =

∑
n≥0

zn+1(H33)rs,n

(H43)rs = zV t
r ◦X t ◦

(
1− zL ◦ Ỹ ◦ Lt ◦ X̃

)−1

◦ L ◦W+
s =

∑
n≥0

zn+1(H43)rs,n

We find the coefficients

(H13)rs,n =

√
κ

2π
e−

πi
κ
(ℓr−M)2

∫
duuℓr−M− 1

2λ(3)s,n(u)

(H23)rs,n = − 1

2π
√
−i
e

πi
κ
ℓ2r−πi

κ
ℓr

∫
du

[
(−1)M

vr + u

(
1

8
− (log vr − log u)2

8π2

)
+ κ∆̃2(−2πi`r, x)e

πi
κ
ℓr− x

2κ

+

(
(−1)M

vr + u

i(log vr − log u)

2π
+ κ∆̃1(−2πi`r, x)e

πi
κ
ℓr− x

2κ

)(
1

2

u2k − 1

u2k + 1

)]
λ(3)s,n(u)

(H33)rs,n =
i

2π
√
−i
e

πi
κ
ℓ2r−πi

κ
ℓr

∫
du

[
(−1)M

vr + u

i(log vr − log u)

2π
+ κ∆̃1(−2πi`r, x)e

πi
κ
ℓr− x

2κ

+

(
(−1)M

vr + u
+ κ∆̃0(−2πi`r, x)e

πi
κ
ℓr− x

2κ

)(
1

2

u2k − 1

u2k + 1

)]
λ(3)s,n(u)

(H43)rs,n =
i
√
κ

2π
e−

πi
κ
(ℓr−M)2

∫
du

1

2

u2k − 1

u2k + 1
uℓr−M− 1

2λ(3)s,n(u)

formally identical up to signs to the previous column. The coefficients λ(3)s,n(u) are
given by the same recursion relation as λ(2)s,n(u) but with a different initial condition,

λ
(3)
s,0(u) =

1√
κ
e

πi
κ
(ℓs−M)2 uk

u2k + 1
u−ℓs+M− 1

2

λ(3)s,n(u) =
1

2π

∫
dv

(
− uk

u2k + 1

)[
1

2

u2k − 1

u2k + 1

1

2

v2k − 1

v2k + 1

(
(−1)M

u+ v
+ κ∆̃0(x, y)e

−x+y
2κ

)

+
1

2

(
u2k − 1

u2k + 1
+
v2k − 1

v2k + 1

)(
(−1)M

u+ v

i(log u− log v)

2π
+ κ∆̃1(x, y)e

−x+y
2κ

)
+

(−1)M

u+ v

(
1

8
− (log u− log v)2

8π2

)
+ κ∆̃2(x, y)e

−x+y
2κ

]
λ
(3)
s,n−1(v)
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The last column is

(H14)rs = V −t
r ◦ Vs + zV −t

r ◦ L ◦ Ỹ ◦
(
1− zLt ◦ X̃ ◦ L ◦ Ỹ

)−1

◦ Lt ◦X ◦ Vs =
∑
n≥0

zn(H11)rs,n

= V −t
r ◦ Vs +

∑
n≥0

zn+1(H41)rs,n

(H24)rs = zW t
r ◦ Y ◦

(
1− zLt ◦ X̃ ◦ L ◦ Ỹ

)−1

◦ Lt ◦ x ◦ Vs =
∑
n≥0

zn+1(H24)rs,n

(H34)rs = −zW+t
r ◦

(
1− zLt ◦ X̃ ◦ L ◦ Ỹ

)−1

◦ Lt ◦X ◦ Vs =
∑
n≥0

zn+1(H34)rs,n

(H44)rs = z2V t
r ◦X t ◦ L ◦ Ỹ ◦

(
1− zLt ◦ X̃ ◦ L ◦ Ỹ

)−1

◦ Lt ◦X ◦ Vs =
∑
n≥0

zn+2(H44)rs,n

where the expansion coefficients can be written as

(H14)rs,n =

√
i

2π
e−

πi
κ
ℓ2r−πi

κ
ℓr

∫
du

[(
(−1)M

vr + u
+ κ∆0(−2πi`r, x)e

πi
κ
ℓr− x

2κ

)(
1

2

u2k − 1

u2k + 1

)

−
(
(−1)M

vr + u

i(log vr − log u)

2π
+ κ∆1(−2πi`r, x)e

πi
κ
ℓr− x

2κ

)]
λ(4)s,n(u)

(H24)rs,n =
i
√
κ

2π
e

πi
κ
(M−ℓr)2

∫
du

1

2

u2k − 1

u2k + 1
uM−ℓr− 1

2λ(4)s,n(u)

(H34)rs,n = −
√
κ

2π
e

πi
κ
(M−ℓr)2

∫
duuM−ℓr− 1

2λ(4)s,n(u)

(H44)rs,n =
1

2π
√
i
e−

πi
κ
ℓ2r−πi

κ
ℓr

∫
du

[
(−1)M

vr + u

(
1

8
− (log vr − log u)2

8π2

)
+ κ∆2(−2πi`r, x)e

πi
κ
ℓr− x

2κ

−
(
(−1)M

vr + u

i(log vr − log u)

2π
+ κ∆1(−2πi`r, x)e

πi
κ
ℓr− x

2κ

)(
1

2

u2k − 1

u2k + 1

)]
λ(4)s,n(u)

and the coefficients λ(4)s,n(u) are given by the following recursion relation:

λ
(4)
s,0(u) =

i√
κ
e−

πi
κ
(M−ℓs)2

uk

u2k + 1

1

2

u2k − 1

u2k + 1
uℓs−M− 1

2

λ(4)s,n(u) =
1

2π

∫
dv

uk

u2k + 1

[
− 1

2

u2k − 1

u2k + 1

1

2

v2k − 1

v2k + 1

(
(−1)M

u+ v
+ κ∆0(x, y)e

−x+y
2κ

)
+

1

2

(
u2k − 1

u2k + 1
+
v2k − 1

v2k + 1

)(
(−1)M

u+ v

i(log u− log v)

2π
+ κ∆1(x, y)e

−x+y
2κ

)
− (−1)M

u+ v

(
1

8
− (log u− log v)2

8π2

)
+ κ∆2(x, y)e

−x+y
2κ

]
λ
(4)
s,n−1(v)
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Having calculated these blocks, we can use the spectral traces we already calculated
to obtain the rank-deformed grand partition function Ξk,M(z). We find the following
result, where we omit the (−1)M(M+1)/2 sign:

Ξ1,0(z) = 1 +
z

64
+

(
−

1

4096
+

1

384π2

)
z
2
+

(
−

17

1048576
+

59

368640π2

)
z
3

+

(
85

134217728
−

121

18350080π2
+

1

294912π4

)
z
4

+

(
397

8589934592
−

8379787

20927899238400π2
+

1199

2548039680π4

)
z
5

+

(
−

1033

54975581388
+

1014424093

48753634065776640π2
−

5165

228304355328π4
+

1

339738624π6

)
z
6
+ O(z

7
)

Ξ1,1(z) =
1

2
+

(
1

128
+

1

32π2

)
z +

(
−

1

8192
+

25

18432π2
+

1

3072π4

)
z
2

+

(
−

1

131072
+

121981

1857945600π2
+

169

1769472π4
+

1

737280π6

)
z
3

+

(
87

268435456
+

804697

178362777600π4
+

49

47185920π6
+

1

330301440π8
−

14129

3853516800π2

)
z
4

+
( 287

17179869184
+

10002037

179789679820800π4
+

2380391

14269022208000π6

+
841

190253629440π8
+

1

237817036800π10
−

7951622183

46168214077440000π2

)
z
5

+
(
−

4235

4398046511104
−

260802634510919

11847133077983723520000π4
+

29158861

2696845197312000π6
+

32481809

19177565847552000π8

+
1369

136982613196800π10
+

1

251134790860800π12
+

785289917597813

67572536815166423040000π2

)
z
6
+ O(z

7
)

Ξ2,0(z) = 1 +
z

128
+

( 35

262144
−

1

768π2

)
z
2
+

( 313

33554432
−

1

98304π2
−

41

1572864π

)
z
3

+
( 124679

274877906944
−

212743

105696460800π2
+

1

1179648π4
−

817

1006632960π

)
z
4
+ O(z

5
)

Ξ2,1(z) =
1

4
+

( 1

256π
−

1

256π2

)
z +

( 123

1048576
−

1

4608π2
−

1

49152π3
+

1

49152π4
−

439

1474560π

)
z
2

+
( 81

536870912
−

451471

158544691200π2
−

203

18874368π3
+

521

75497472π4
−

1

31457280π5
+

1

15728640π6
+

137377

105696460800π

)
z
3

+
( 317087

1099511627776
−

1649

72477573120π6
+

1

42278584320π7
+

1

21139292160π8
+

4031

72477573120π5

−
1601313263

3409345039564800π2
+

24706351

30440580710400π3
+

6278849

60881161420800π4
−

10532702423

12500931811737600π

)
z
4
+ O(z

5
)

Ξ2,2(z) =
1

8
+

( 3

1024
−

1

192π

)
z +

( 73

2097152
−

7

294912π2
+

5

98304π4
−

5

49152π

)
z
2

+
( 1113

268435456
−

7559

1509949440π2
+

30433

6794772480π3
+

7

12582912π4
+

1

2359296π5
−

188801

15854469120π

)
z
3
+ O(z

4
)

The coefficients Zk,M(N) show agreement with the perturbative Airy formula, with
a shift in Bk.

However, we were unable to find a bilinear formula satisfied by Ξk,M(z). It does
not satisfy the expected q-Painlevé-like D-type formula.

3.3.3 D̂4 quiver exact calculation
The D̂4 quiver is the one we started with. In this case, we have calculated Ξk,M(z)
for the special case k = 1/2, 1 and M = 0, that is without the rank deformation.
Due to how involved the calculations are, there is no use in calculating further until
we can invert the spectral density operator and find the mirror curve.

The one-particle density is in this case written up to a similarity transformation
as

ρ̂ =
1

2 cosh Q̂
2

tanh Q̂
2
+ tanh P̂

2

2

1(
2 cosh P̂

2

)2 tanh Q̂
2
+ tanh P̂

2

2

1

2 cosh Q̂
2
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Using the Fourier transforms for r = 0, 1, 2

Q 〈x| 1(
2 cosh P̂

2

)2
(
tanh P̂

2

2

)r

|y〉Q =
1

2κ sinh x−y
2

x− y

2πκ[
δr0 +

i

2

x− y

2πκ
δr1 +

1

12

(
1−

(
x− y

2πκ

)2
)
δr2

]

the matrix element of ρ̂ the Q̂ eigenbasis is

Q 〈x| ρ̂ |y〉Q =
1

2 cosh x
2

1

2 cosh y
2

1

2κ sinh x−y
2κ

x− y

2πκ

[tanh x
2

2

tanh y
2

2

+

(
tanh x

2

2
+

tanh y
2

2

)
i

2

x− y

2πκ
+

1

12

(
1− 2

(
x− y

2πκ

)2
)]

which we can rewrite in the form suitable for TWYP calculations,

Q 〈x| ρ̂ |y〉Q =
E(x)E(y)

e
x
κ − e

y
κ

1

κ

4∑
i=1

fi(x)gi(x)

with

E(x) =
e

x
2κ

2 cosh x
2

f1(x) =
x

2πκ

(
1

12
+
i

4

x

2πκ
− 1

6

( x

2πκ

)2)
g1(x) = 1

f2(x) = 1, g2(x) =
x

2πκ

(
− 1

12
+
i

4

x

2πκ
+

1

6

( x

2πκ

)2)

f3(x) =
tanh x

2

2

x

2πκ
+
i

2

( x

2πκ

)2
, g3(x) =

tanh x
2

2
− i

x

2πκ

f4(x) =
tanh x

2

2
+ i

x

2πκ
g4(x) = −

tanh x
2

2

x

2πκ
+
i

2

( x

2πκ

)2
The same form allows us the same manipulations to go through and yield

Q 〈x| ρ̂n |y〉Q =
E(x)E(y)

e
x
κ − e

y
κ

n−1∑
l=0

4∑
i=1

φ
(i)
l (x)ψ

(i)
n−1−l(y),

φ
(i)
l (x) =

1

E(x)
Q 〈x| ρ̂nE(Q̂)fi(Q̂)|0〉〉, ψ(i)

l (x) = 〈〈0|gi(Q̂)E(Q̂)ρ̂n |x〉Q
1

E(x)

Recursion relations can be obtained from this expression, namely

φ
(i)
0 =

1√
κ
fi(x)

φ
(i)
l (x) =

∫
dy

2π

E(y)2

e
x
κ − e

y
κ

1

κ

x− y

2πκ

[tanh x
2

2

tanh y
2

2

+

(
tanh x

2

2
+

tanh y
2

2

)
i

2

x− y

2πκ
+

1

12

(
1− 2

(
x− y

2πκ

)2
)]

φ
(i)
l−1(y)
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The coefficients ψ(i)
n (x) can be obtained from φ

(i)
n (x) by

ψ
(j)
l = φ

(j+1)
l |i 7→−i, i = 1, 3

ψ
(j)
l = −φ(j−1)

l |i 7→−i, i = 2, 4

where i 7→ −i means changing only the imaginary units explicitly appearing in fi’s
and the matrix element Q 〈x| ρ̂ |y〉Q, not fully complex-conjugating. Once again new
variables u = e

x
κ , v = e

y
κ turn this into a rational-with-logs expression amenable to

the Bernoulli residue trick,

φi
l(u) =

1

2π

∫ ∞

0

dv
vκ

(u− v)(vκ + 1)2

{
[ 1

8π

uκ − 1

uκ + 1

vκ − 1

vκ + 1
+

i

16π2

(
uκ − 1

uκ + 1
+
vκ − 1

vκ + 1

)
log u+

1

24π

(
1− log2 u

2π2

)]
log u

−
[ 1

8π

uκ − 1

uκ + 1

vκ − 1

vκ + 1
+

i

8π2

(
uκ − 1

uκ + 1
+
vκ − 1

vκ + 1

)
log u+

1

24π

(
1− 3 log2 u

2π2

)]
log v

+
[ i

16π2

(
uκ − 1

uκ + 1
+
vκ − 1

vκ + 1

)
− log u

16π3

]
log2 v +

1

48π3
log3 v

}
φ
(i)
l−1(v)

=
∑
j≥0

∑
w:poles in C\R≥0

Resv=w
1

2π

vκ

(u− v)(vκ + 1)2
φ
(i),j
l−1 (v)

[
− (2πi)j+1

j + 1
Bj+1

(
log+ v

2πi

)( 1

8π

uκ − 1

uκ + 1

vκ − 1

vκ + 1
+

i

16π2

(
uκ − 1

uκ + 1
+
vκ − 1

vκ + 1

)
log u

+
1

24π

(
1− log2 u

2π2

))
log u

+
(2πi)j+2

j + 2
Bj+2

(
log+ v

2πi

)( 1

8π

uκ − 1

uκ + 1

vκ − 1

vκ + 1
+

i

8π2

(
uκ − 1

uκ + 1
+
vκ − 1

vκ + 1

)
log u

+
1

24π

(
1− 3 log2 u

2π2

))
− (2πi)j+3

j + 3
Bj+3

(
log+ v

2πi

)(
i

16π2

(
uκ − 1

uκ + 1
+
vκ − 1

vκ + 1

)
− 1

16π3
log u

)
− (2πi)j+4

j + 4
Bj+1

(
log+ v

2πi

)
1

48π3

]
where as before φ(i),j

l (u) are rational functions coming from the expansion

φ
(i)
l (u) =

∑
j≥0

φ
(i),j
l (u) logj u

and the poles are located at v = u and v = e2πi
κ
(m− 1

2
) for m = 1, 2, ..., κ. The

spectral traces can then be recovered from

tr ρ̂n =
∑
j≥0

∑
w:poles in C\R≥0

Resu=w
κ

4π

uκ

(uκ + 1)2

(
−(2πi)j+1

j + 1

)
Bj+1

(
log+ v

2πi

)
Φ(j)

n (u)

where the rational functions Φ
(j)
n (u) come from the expansion of

n−1∑
l=0

4∑
i=1

(
dφ

(i)
l

du
ψ

(i)
n−1−l(u)− φ

(i)
l (u)

dψ
(i)
n−1−l

du

)
=
∑
j≥0

Φ(j)
n (u) logj u
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and the poles are at w = e
2πi
κ

(m− 1
2
), m = 1, 2, ..., κ. Interestingly, unlike the D̂3 case,

there are no terms like uκ
2 . Therefore, we can set κ = 1, which is Chern-Simons

level of k = 1
2
. The first several partition functions in this case are

Z 1
2
,0(1) =

1

48π2

Z 1
2
,0(2) =

1

302400π2
− 1

7680π6

Z 1
2
,0(3) =

337

99532800π4
− 13

5529600π6
− 17

5160960π8
− 1763

5588352000π2

Z 1
2
,0(4) = − 19

412876800π10
− 1

9083289600π12
− 151

65028096000π8

− 10879

243855360000π4
+

110671

1170505728000π6
+

33161

9323233920000π2

Z 1
2
,0(5) =

225860389

483316446412800000π4
− 17004137

12051526975488000π6

− 100577927

2959608397794048000π2
+

731

1498247331840π10
− 1583

3269984256000π12

− 1

991895224320π14
+

348757

337983528960000π8

We have results up to N = 11. For k = 1 the first several partition functions are

Z1,0(1) =
1

96π2

Z1,0(2) =
3

1048576
+

7

589824π4
− 1

245760π6
− 36277

1238630400π2

Z1,0(3) = − 7

268435456
+

191887

1426902220800π4
− 1541

5662310400π6

− 31

660602880π8
+

180619357

732476473344000π2

Z1,0(4) =
828980993

16876257945845760000π4
+

59868161

12785043898368000π6

− 8380522497631

3754029823064801280000π2
+

243

1099511627776
− 293

1268357529600π10

+
19

4650644275200π12
− 3834259

2130840649728000π8

Z1,0(5) = − 484825215577667

32434817671279883059200000π4
− 226751681927

7658752696878366720000π6

+
20535314431317819373

1016913702199391576276336640000π2
− 525

281474976710656

− 16850329

2454728428486656000π10
− 3779

5952824672256000π12

+
8443

162512113552588800π14
+

92575189433

2835211334902087680000π8

We have results up to N = 8. Results are available for k = 3/2 and k = 2, as well.
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Figure 3.11: Plots of the D̂4-quiver model against the semiclassical expansions for
k = 1/2, 1.

3.3.4 Discussion
We were unable to find bilinear relations among the functions considered. However,
there is a clear way forward – by turning on FI parameters and mass deformations,
the symmetries of the matrix model may give a clue as to what the spectral curve
is, and thereby tell us what the model is computing.

There are other possible directions:

• We can further investigate the rank-deformed coefficient Bk(M) and see if it
satisfies a Seiberg-like duality, and see whether this duality is consistent with
the type IIB realisation.

• Identify the worldsheet instanton exponents and see if it is consistent with
topologically nontrivial cycles on the orbifold Y7 = S7/G of the dual space-
time. This can be compared with [211], where membrane instantons were
obtained.

• Likewise, the shift of Bk can be compared with the prescription in [34].

• If a mass deformation is turned on, we can find a phase transition with respect
to a real mass. We can investigate whether the critical mass coincides with
the point where the real part of the worldsheet instanton exponent vanishes.
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Appendices

A Quantum dilogarithm and other special func-
tions

In the following we assume |q| 6= 1. We recall the definition of q−numbers,

[u] =
1− qu

1− q
,

and the infinite multiple q-Pochhammer symbol

(z; q1, . . . , qk)∞ = exp

{(
−

∞∑
p=1

zp

p

1

1− qp1
· · · 1

1− qpk

)}
|q|<1
=

∞∏
l1,...,lk=0

(
1− zql11 · · · qlkk

)
.

This is defined for |z| < 1, but can be analytically continued to z ∈ C using the
latter equality. We extend the definition to an empty symbol (z; )∞ := 1 − z. For
any k ≥ 1 we then have the relations

(z; q1, . . . , qk)∞
(q1z; q1, . . . , qk)∞

= (z; q2, . . . , qk)∞.

Let us introduce the q-Gamma and q-Barnes G functions

Γq(u) =
(q; q)∞
(qu; q)∞

(1− q)u−1, Gq(u) =
(qu; q, q)∞
(q; q, q)∞

(q; q)u−1
∞ (1− q)−

(u−1)(u−2)
2 ,

where |q| < 1, which satisfy the q-analogues of the usual properties of Gamma and
Barnes G functions,

Γq(u+ 1) = [u]Γq(u), Gq(u+ 1) = Γq(u)Gq(u)

and are both equal to one at u = 1 and log-convex [229]. These can also be easily
analytically continued to |q| > 1 using

Γq(u) = q
(u−1)(u−2)

2 Γq−1(u), Gq(u) = q
(u−1)(u−2)(u−3)

6 Gq−1(u).

Let us finally introduce the quantum dilogarithm function Φb (z) as [167]

Φb (z) =

(
e2πb(z+

i
2(b+

1
b )); e2πib

2
)
∞(

e
2π
b (z−

i
2(b+

1
b )); e−

2πi
b2

)
∞

.
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Note that Φb (z) satisfies the following recursive relations

Φb (z + ib)

Φb (z)
=

1

1 + eπib2e2πbz
,

Φb

(
z + i

b

)
Φb (z)

=
1

1 + e
πi
b2 e

2πz
b

, (.84)

and that its asymptotic behavior is

Φb (z) ∼

{
exp

(
iπz2 + πi

12
(b2 + b−2)

)
(Re [z] → ∞)

1 (Re [z] → −∞)
. (.85)

The K-theoretic analogue of the 1-loop term uses

γϵ1,ϵ2(x) =
∞∑
n=1

1

d

e−Rdx

(eRdϵ1 − 1)(eRdϵ2 − 1)
=

∞∑
n=1

eRdx

d

∞∑
k1,k2=0

qdk11 qdk22

= −
∞∑

k1,k2=0

log
(
1− eRxqk11 q

k2
2

)
So that

exp{−γϵ1,ϵ2(x)} =
∞∏

k1,k2=0

(
1− eRdxqk11 q

k2
2

)
= (eRx; q1, q2)∞

Z1−loop(u, q1, q2) =
∏
α∈R

exp{−γϵ1,ϵ2(α · a)} =
∏
α∈R

(uα; q1, q2)∞
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B The deep Coulomb approximation
Many times in the main text it was useful to check equivariant volume calculations
by performing a large σ limit and studying the leading term, especially when we
had either nothing to compare with at all or the blowup technique turned out to be
too computationally costly. To describe this, we first define the auxiliary function

ZdC
n (ε1, ε2,σ) =

1

n!

(
−1

ε1ε2
Z1(1,−1,σ)

)n

which we call the deep Coulomb instanton function. This is going to be the large σ
limit, in which the only contribution to the equivariant volume given by the n-fold
symmetric product of one instantons terms and more complicated configurations of
Young diagrams are not involved. We claim that

ZdC
n (ε1, ε2,σ) = lim

γ→0
γ−(2h∨−2)nZn(ε1, ε2,σ/γ) (.86)

In other words, this is the leading part under the scaling

Zn(ε1, ε2,σ/γ) = γ(2h
∨−2)nZdC

n (ε1, ε2,σ) +O(γ(2h
∨−2)n+1)

Clearly, ZdC
1 (1,−1,σ) = Z1(1,−1,σ). In this case, the subleading terms are absent,

and that the scaling is correct can be seen from the universal 1-instanton term, since
there are 2h∨ − 2 terms in the denominator of (1.6). In the refined case ε1 + ε2 6= 0,
this is no longer true, but it’s immediate that (.86) is true.

We prove the rest by induction, using (1.7). In the following we split the sum
into one with m = 0 and the rest. For n > 1 write

lim
γ→0

Zn(ε1, ε2,σ/γ)

ZdC
n (ε1, ε2,σ/γ)

= lim
γ→0

1

n2ε1ε2

( ∑
i1+i2=n
i1,2<n

(ε1i1 + (ε1 + ε2)i2)(−ε2i2)
Zi1(ε1, ε2,σ/γ)Zi2(−ε2, ε1 + ε2,σ/γ)

ZdC
n (ε1, ε2,σ/γ)

+
∑

1
2
m2+i1+i2=n

0 6=m∈Q∨, i1,2<n

(
ε1i1 + (ε1 + ε2)i2 +m · σ/γ + 1

2
m2(2ε1 + ε2)

)
L(ε1, ε1 + ε2,σ/γ,m)

(
ε1i1 + (ε1 + ε2)(i2 − n) +m · σ/γ +

1

2
m2(2ε1 + ε2)

)
Zi1(ε1, ε2,σ/γ + ε1m)Zi2(−ε2, ε1 + ε2,σ/γ + (ε1 + ε2)m)

ZdC
n (ε1, ε2,σ/γ)

)
Assume (.86) is true for all n′ < n. Then the first sum becomes

1

n2ε1ε2

∑
i1+i2=n
i1,2<n

(ε1i1 + (ε1 + ε2)i2)(−ε2i2)
(i1 + i2)!

i1!i2!

(
− ε1
ε1 + ε2

)i2

=
1

n2ε1ε2

n−1∑
i=1

(
−(n− i)2ε1ε2 + n(n− i)(ε1 + ε2)

)(n
i

)(
− ε1
ε1 + ε2

)i

= 1− εn−2
2 ((n− 1)ε1 + nε2)

n(ε1 + ε2)n−1
+

(n− 1)εn−2
2

n(ε1 + ε2)n−2
= 1− εn−1

2

n(ε1 + ε2)n−1
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In the second sum, all terms except the ones proportional to σ can be ignored, as
well as all the shifts. It becomes

1

n2ε1ε2

∑
1
2
m2+i1+i2=n

0 6=m∈Q∨, i1,2<n

(m · σ)2 lim
γ→0

ZdC
i1

(ε1, ε2,σ/γ)Z
dC
i2

(−ε2, ε1 + ε2,σ/γ)

γ2L(ε1, ε1 + ε2,σ/γ,m)ZdC
n (ε1, ε2,σ/γ)

=
1

n2ε1ε2(−Z1(1,−1,σ))

∑
1
2
m2+i1+i2=n

0 6=m∈Q∨, i1,2<n

(m · σ)2 ε1ε2
(i1 + i2 + 1)!

i1!i2!

(
− ε1
ε1 + ε2

)i2

lim
γ→0

1

γ2h∨L(ε1, ε1 + ε2,σ/γ,m)

The limit is dependent on the incidence properties of the colattice vector with
respect to the roots. Note that if m2 = 2, |{α ∈ R|α ·m = −1}| = 2h∨ − 4 which
contribute 1 term each in (1.8) and |{α ∈ R|α ·m = ±2}| = 2 which contribute 2
terms each. These vectors are the short coroots. For any other nonzero vector, the
number of terms is greater than 2h∨. Explicitly,

lim
γ→0

γ2h
∨
L(ε1, ε1 + ε2,σ/γ,m) =


0, if m = 0,

(m · σ)4
∏

α·m=1

(α · σ), if m ∈ R∨
short,

∞ otherwise.

Therefore, the sum becomes

1

n2(−Z1(1,−1,σ))

∑
m∈R∨

short

1

(m · σ)2
∏

α·m=1

(α · σ)
∑

i1+i2=n−1
i1,2<n

(i1 + i2 + 1)!

i1!i2!

(
− ε1
ε1 + ε2

)i2

=
εn−1
2

n(ε1 + ε2)n−1

using (1.6). This proves the claim. Moreover, we can prove quite easily that the
full expansion around γ = 0 has to be even,

Zn(ε1, ε2,σ/γ)

ZdC
n (ε1, ε2,σ/γ)

= 1 +
∑
k>1

zk(σ)γ
2k,

since this expression is holomorphic and Weyl invariant, and the Weyl group is
generated by reflections. This can also be inferred from the blowup formula by a
more involved, but straightforward calculation.
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C Weyl transformations
We give the list of 2 · 4! Weyl transformations discussed in 3.2.5 in terms of the
generators, realized also as matrices, arranged by length. A positive integer i1...ik
represents the product si1 · · · sik :

21343 =

(
1 0 −1 0 0
0 1 −1 0 0
1 1 −1 0 0
0 0 0 1 0
0 0 0 0 −1

)
, 213413 =

 1/2 1/2 −1 0 −1
1/2 1/2 −1 0 1
1 1 −1 0 0
0 0 0 1 0
1/2 −1/2 0 0 0

 , 213423 =

 1/2 1/2 −1 0 1
1/2 1/2 −1 0 −1
1 1 −1 0 0
0 0 0 1 0

−1/2 1/2 0 0 0

 ,

432134 =

(
1 0 0 0 0
0 1 0 0 0
1 1 −1 0 0
0 0 0 1 0
0 0 0 0 −1

)
, 452134 =

 1/2 1/2 −1 1 0
1/2 1/2 −1 −1 0
1 1 −1 0 0
1/2 −1/2 0 0 0
0 0 0 0 −1

 , 2134213 =

(
0 1 −1 0 0
1 0 −1 0 0
1 1 −1 0 0
0 0 0 1 0
0 0 0 0 1

)
,

4532134 =

 1/2 1/2 0 1 0
1/2 1/2 0 −1 0
1 1 −1 0 0
1/2 −1/2 0 0 0
0 0 0 0 −1

 , 2345134 =

 1/2 1/2 −1 0 −1
1/2 1/2 −1 0 1
1 1 −1 0 0
1/2 −1/2 0 0 0
0 0 0 1 0

 , 1345234 =

 1/2 1/2 −1 0 1
1/2 1/2 −1 0 −1
1 1 −1 0 0
1/2 −1/2 0 0 0
0 0 0 −1 0

 ,

432134131 =

 1/2 1/2 0 0 −1
1/2 1/2 0 0 1
1 1 −1 0 0
0 0 0 1 0
1/2 −1/2 0 0 0

 , 452134131 =

 1/2 1/2 −1 1 0
1/2 1/2 −1 −1 0
1 1 −1 0 0
0 0 0 0 −1
1/2 −1/2 0 0 0

 , 432134232 =

 1/2 1/2 0 0 1
1/2 1/2 0 0 −1
1 1 −1 0 0
0 0 0 1 0

−1/2 1/2 0 0 0

 ,

452134232 =

 1/2 1/2 −1 1 0
1/2 1/2 −1 −1 0
1 1 −1 0 0
0 0 0 0 1

−1/2 1/2 0 0 0

 , 4532134131 =

 1/2 1/2 0 1 0
1/2 1/2 0 −1 0
1 1 −1 0 0
0 0 0 0 −1
1/2 −1/2 0 0 0

 , 2345134131 =

(
1 0 −1 0 0
0 1 −1 0 0
1 1 −1 0 0
0 0 0 0 −1
0 0 0 1 0

)
,

1345234131 =

(
0 1 −1 0 0
1 0 −1 0 0
1 1 −1 0 0
0 0 0 0 −1
0 0 0 −1 0

)
, 2345321341 =

 1/2 1/2 0 0 −1
1/2 1/2 0 0 1
1 1 −1 0 0
1/2 −1/2 0 0 0
0 0 0 1 0

 , 4532134232 =

 1/2 1/2 0 1 0
1/2 1/2 0 −1 0
1 1 −1 0 0
0 0 0 0 1

−1/2 1/2 0 0 0

 ,

2345134232 =

(
0 1 −1 0 0
1 0 −1 0 0
1 1 −1 0 0
0 0 0 0 1
0 0 0 1 0

)
, 1345234232 =

(
1 0 −1 0 0
0 1 −1 0 0
1 1 −1 0 0
0 0 0 0 1
0 0 0 −1 0

)
, 1345321342 =

 1/2 1/2 0 0 1
1/2 1/2 0 0 −1
1 1 −1 0 0
1/2 −1/2 0 0 0
0 0 0 −1 0

 ,

4321343213 =

(
0 1 0 0 0
1 0 0 0 0
1 1 −1 0 0
0 0 0 1 0
0 0 0 0 1

)
, 4521343213 =

 1/2 1/2 −1 1 0
1/2 1/2 −1 −1 0
1 1 −1 0 0

−1/2 1/2 0 0 0
0 0 0 0 1

 , 3213452134 =

 1/2 1/2 −1 −1 0
1/2 1/2 −1 1 0
1 1 −1 0 0
1/2 −1/2 0 0 0
0 0 0 0 1

 ,

23453213431 =

(
1 0 0 0 0
0 1 0 0 0
1 1 −1 0 0
0 0 0 0 −1
0 0 0 1 0

)
, 13453213432 =

(
1 0 0 0 0
0 1 0 0 0
1 1 −1 0 0
0 0 0 0 1
0 0 0 −1 0

)
, 45321343213 =

 1/2 1/2 0 1 0
1/2 1/2 0 −1 0
1 1 −1 0 0

−1/2 1/2 0 0 0
0 0 0 0 1

 ,

23451343213 =

 1/2 1/2 −1 0 1
1/2 1/2 −1 0 −1
1 1 −1 0 0

−1/2 1/2 0 0 0
0 0 0 1 0

 , 13452343213 =

 1/2 1/2 −1 0 −1
1/2 1/2 −1 0 1
1 1 −1 0 0

−1/2 1/2 0 0 0
0 0 0 −1 0

 , 32134532134 =

 1/2 1/2 0 −1 0
1/2 1/2 0 1 0
1 1 −1 0 0
1/2 −1/2 0 0 0
0 0 0 0 1

 ,

1345321342131 =

(
0 1 0 0 0
1 0 0 0 0
1 1 −1 0 0
0 0 0 0 −1
0 0 0 −1 0

)
, 3213452134131 =

 1/2 1/2 −1 −1 0
1/2 1/2 −1 1 0
1 1 −1 0 0
0 0 0 0 −1

−1/2 1/2 0 0 0

 , 2345321342132 =

(
0 1 0 0 0
1 0 0 0 0
1 1 −1 0 0
0 0 0 0 1
0 0 0 1 0

)
,

3213452134232 =

 1/2 1/2 −1 −1 0
1/2 1/2 −1 1 0
1 1 −1 0 0
0 0 0 0 1
1/2 −1/2 0 0 0

 , 5432134521343 =

(
1 0 −1 0 0
0 1 −1 0 0
1 1 −1 0 0
0 0 0 −1 0
0 0 0 0 1

)
, 13453213432131 =

 1/2 1/2 0 0 −1
1/2 1/2 0 0 1
1 1 −1 0 0

−1/2 1/2 0 0 0
0 0 0 −1 0

 ,

32134532134131 =

 1/2 1/2 0 −1 0
1/2 1/2 0 1 0
1 1 −1 0 0
0 0 0 0 −1

−1/2 1/2 0 0 0

 , 23453213432132 =

 1/2 1/2 0 0 1
1/2 1/2 0 0 −1
1 1 −1 0 0

−1/2 1/2 0 0 0
0 0 0 1 0

 , 32134532134232 =

 1/2 1/2 0 −1 0
1/2 1/2 0 1 0
1 1 −1 0 0
0 0 0 0 1
1/2 −1/2 0 0 0

 ,

32134521343213 =

 1/2 1/2 −1 −1 0
1/2 1/2 −1 1 0
1 1 −1 0 0

−1/2 1/2 0 0 0
0 0 0 0 −1

 , 54321345213413 =

 1/2 1/2 −1 0 −1
1/2 1/2 −1 0 1
1 1 −1 0 0
0 0 0 −1 0

−1/2 1/2 0 0 0

 , 54321345213423 =

 1/2 1/2 −1 0 1
1/2 1/2 −1 0 −1
1 1 −1 0 0
0 0 0 −1 0
1/2 −1/2 0 0 0

 ,

54321345432134 =

(
1 0 0 0 0
0 1 0 0 0
1 1 −1 0 0
0 0 0 −1 0
0 0 0 0 1

)
, 321345321343213 =

 1/2 1/2 0 −1 0
1/2 1/2 0 1 0
1 1 −1 0 0

−1/2 1/2 0 0 0
0 0 0 0 −1

 , 543213452134213 =

(
0 1 −1 0 0
1 0 −1 0 0
1 1 −1 0 0
0 0 0 −1 0
0 0 0 0 −1

)
,

54321345432134131 =

 1/2 1/2 0 0 −1
1/2 1/2 0 0 1
1 1 −1 0 0
0 0 0 −1 0

−1/2 1/2 0 0 0

 , 54321345432134232 =

 1/2 1/2 0 0 1
1/2 1/2 0 0 −1
1 1 −1 0 0
0 0 0 −1 0
1/2 −1/2 0 0 0

 , 543213454321343213 =

(
0 1 0 0 0
1 0 0 0 0
1 1 −1 0 0
0 0 0 −1 0
0 0 0 0 −1

)
.
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