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We give an introductory overview of how geometric ideas naturally emerge from a study of
geometric phases in nonrelativistic quantum mechanics, focusing primarily on Berry’s phase. We
expand on the notions of U(1) gauge symmetry and parallel transport, eventually characterizing
our simple system as a complex hermitian line bundle. We give a few examples, as well as comment
on some generalizations which go beyond adiabaticity and display the fundamental importance of
holonomy on quantum evolution.

I. INTRODUCTION AND OUTLINE

Geometric phases tend to represent subtle manifesta-
tions of nontrivial geometric ideas. This is clearly seen
in the example of Berry’s phase, which will be our main
focus. Starting from quite simple nonrelativistic quan-
tum mechanics in the context of adiabatic evolution, one
quickly finds themselves talking about concepts such as
parallel transport, principal bundles etc. That this phase
is a subtlety with a lot to say is also confirmed by history.
The appearance of a geometric phase was indeed first no-
ticed and dismissed as irrelevant in the Born-Oppenheimer
approximation, until Berry [1] rediscovered it and noted
it was actually observable. Immediately after Berry’s
discovery of his eponymous phase, Simon1 has shown how
to interpret this geometrically [2]. We will try to focus
on elucidating its geometric significance.

This work is divided into three parts. In the first part
we introduce Berry’s phase. In the second part we try to
delve into the geometry at work. In the third and final
part we give examples and some generalizations. We also
give some extra relations in the appendix.

We noted that geometric phases pack a conceptual
punch. One does need a lot of machinery as well as
inutition to understand them. We will try to keep this
discussion as self-contained as possible. If we have failed,
we apologise and refer the reader to two ambitious classics,
[6] and [7].

II. PRELIMINARIES

A. Adiabaticity

The usual derivation of geometric phases follows directly
from the Schrödinger equation. The central assumption
in this approach is that of adiabaticity, for which we need
a suitable definition. Consider therefore a time-dependent
Hamiltonian with a discrete and nondegenerate spectrum2.

1 Curiously, Simon’s work was published before Berry’s.
2 NB: this assumption may be relaxed to Hamiltonians satisfying

certain gap conditions. This would take us off track, so we refer
the interested reader to [5].

Since the eigensystem will depend on time, we will pick
a set of instantaneous eigenvectors {|n(t)〉}n∈S , where
S ⊆ N is the index set of (for simplicity) a finite number
of eigenvectors. These are required to satisfy

H(t) |n(t)〉 = En(t) |n(t)〉 (1)

and also need to be orthogonal, ie

〈n(t)|m(t)〉 = δnm,∀t (2)

where we have not specified the interval t belongs to as
this is immaterial to our discussion.

Adiabaticity could in an intuitive way be called “static
dynamics”. We require a time evolution slow enough not
to bring about sudden changes to our system, akin to
pulling upwards a rock tied to a string - yank it and the
string will undoubtedly snap. In effect, we are consider-
ing any characteristic times in our system to be much
shorter than characteristic times associated to the adia-
batic evolution. We can capture this intuition by requiring
near-simultaneous states remain orthogonal:

〈n(t)|m(t+ δt)〉 != 0 (3)
⇒ 〈n(t)| ∂t |m(t)〉 = 0 (4)

where we take m 6= n. Note that we should not be taking
these equals signs too literally, since adiabaticity is after
all a certain limit of a process. It might be better to write
“→” etc. A way to quantify this is by applying ∂t to the
eigenvector equation itself

(∂tH(t)) |n(t)〉+H(t)∂t |n(t)〉
= (∂tEn(t)) |n(t)〉+ En(t)∂t |n(t)〉

Acting on this by 〈m(t)|, and no longer writing time
dependance to reduce clutter gives us

〈m| ∂t |n〉 = −〈m| ∂tH |n〉
Em − En

(5)

We may now define the absolute value of the RHS to be
1/Tmn. We see that adiabaticity amounts to Tmn →∞,
which we may interpret as some time of transition between
the two states. However we interpret it, it is clearly a
time scale associated to adiabatic evolution, assumed
large, and not associated to any characteristic time scales
of our system.
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B. The usual derivation

Now that we have cleared that up we will consider the
evolution of the system in some state |ψ(t)〉 which we
expand in our eigenbasis and write

|ψ(t)〉 =
∑
m∈S

cm(t)e− i
~
´ t

0 dt
′Em(t′) |m(t)〉 (6)

We can act on this by ∂t, reexpress it using the Schrödinger
equation and then act by with 〈n(t)|. Adiabaticity how-
ever kills all terms except the m = n one, and we obtain

ċm = −cm 〈m| ∂t |m〉 . (7)

Now consider a system initially prepared in the n-th
eigenstate. This means we have |φ(0)〉 = |n(0)〉, which
means that cm(0) = δmn, giving us, finally,

|ψ(t)〉 = cn(t)e− i
~
´ t

0 dt
′En(t′) |n(t)〉 (8)

with an additional phase

cn(t) = exp
{
−
ˆ t

0
dt′ 〈n| ∂t′ |n〉

}
(9)

which we will write as

cn(t) = exp
{
i

ˆ t

0
dt′ 〈n| ∂t′ |n〉

}
(10)

since 〈n| ∂t′ |n〉 is purely imaginary3. We see that adi-
abaticity entails that a system initally prepared in an
eigenstate will only change up to phase.

C. Introducing a parameter space

In reality, we evolve our system by manipulating a given
set of independent parameters. For instance, we may be
dealing with an electron moving in a plane perpendicular
to a solenoid, so that the parameters are the electron’s x,y
positions. In this setup we get the Aharonov-Bohm effect,
which will be discussed later. We will therefore assume
our system is located at a certain point X = (X1, . . . , Xd)
in an d-dimensional parameter space M , assumed to be a
manifold.

We have minor modifications to make. First of all, we
will write |n(t)〉 as |n(X)〉, although we will often omit
this altogether. Next, we only need modify the additional

3 Since 0 = ∂t 〈n|n〉 = 〈ṅ|n〉 + 〈n|ṅ〉 = 2Re 〈n|ṅ〉

phase we obtained in the last section:

Im
ˆ t

0
dt′ 〈n| ∂t′ |n〉 (11)

=Im
ˆ t

0
dt′ 〈n(X)|∇X |n(X)〉 · ∂X

∂t′
(12)

=Im
ˆ
C

dX · 〈n(X)|∇X |n(X)〉 (13)

=Im
ˆ
C

〈n(X)|dn(X)〉 (14)

where we the last line defines a 1-form 〈n|∂kn〉dXk.
Now consider a system adiabatically undergoing a loop

in the parameter space. In this case we will call this phase
Berry’s phase and label it γC . If the curve is such that
Stokes’ theorem is applicable, we have

γC = Im
˛
〈n|dn〉 = Im

¨
Σ
〈dn| ∧ |dn〉 (15)

where C = ∂Σ. The 2-form is called Berry’s curvature,
and some further properties will be given in the appendix.

Now, the reader may have been rolling her eyes ever
since it got clear to her that we were to obtain a phase.
She interjects: It is basic quantum mechanics that states
are defined up to a phase! We may as well have taken
|ñ(t)〉 = eiλn(t) |n(t)〉, ∀n ∈ S as our basis, so we can
simply gauge away the phase.

True, this defines a special basis, in the so-called Born-
Fock gauge. Following the reader, we see that by choosing
exactly |ñ(t)〉 = eiλn(t) |n(t)〉, where ∂tλn = i 〈n|ṅ〉 (and
not i

〈
ñ
∣∣ ˙̃n〉, since this is now zero!) we eliminate the

geometric phase, and we get

|ψ(t)〉 = e−
i
~
´ t

0 dt
′En(t′) |ñ(t)〉 (16)

Now let’s follow a closed path C ∈M with base point
X0, and consider a locally well-defined basis |n(X)〉, single
valued at X0. After going following the loop, we have

|ñf 〉 = ei(γC+γd) |n(X0)〉 = ei(γC+γd) |ñi〉 (17)

so there is a phase difference between the initial and
final states, given by both Berry’s phase and a dynamical
phase. We have tried to hide the phase differences by
incessantly U(1)-rotating our vector, and the result is a
nonzero, observable rotation. It could happen that this
geometric phase vanishes for every loop, but in general
|ñ〉 will only be locally defined since it’s a certian vector
field on a manifold.

A way to measure this would be to prepare two particles
in the same eigenstate, transport only one and then mea-
sure interference. It turns out that it’s easier to prepare
a superposition of different eigenstates, so that

|ψi〉 =
∑
n

an |n〉 (18)

|ψf 〉 =
∑
n

an |n〉 ei(γC,n+γd,n) (19)
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and then measure an observable which doesn’t commute
with the Hamiltonian to get interference. Note that we
can get rid of the dynamical phase altogether by replacing
the Hamiltonian with H − En(t)1.

III. GEOMETRY

A. U(1) gauge invariance

In this and the following sections we will attempt to
give a geometric interpretation of Berry’s phase. First of
all, we note that it’s gauge invariant, in the sense that
|n(x)〉 7→ eiβ(X) |n(x)〉, with let’s say β ∈ C∞(M). It is
very simple to see that γC is invariant since we have

i 〈n|dn〉 7→ i 〈n|dn〉 − dβ (20)

But this is a U(1) gauge transformation and this is exactly
how such gauge connections transform. We therefore
define the Simon connection,

An = i 〈n|dn〉 = −Im 〈n|dn〉 (21)

We already saw that it is purely imaginary, and that

γC =
ˆ
C

An = i

ˆ
Σ
〈dn| ∧ |dn〉 ≡

ˆ
Σ
F (22)

defines a curvature - Berry’s curvature.
Now we see that in order to be gauge invariant the

(single particle) Hamiltonian needs to have a kinetic part
given by

Hkin = 1
2m (p− eAn)2 (23)

This is nothing more than the Born-Oppenheimer ap-
proximation, it turns out [3]. Here p takes care of the
fast degrees of freedom, and the connection represents
the “frozen”, slow ones. However, we don’t even need
the Hamiltonian to be gauge invariant. The gauge trans-
formation will give a family of Hamiltonians H[β(X)]
with the common property of having one representative of
these “gauged” kets as an eigenket. Berry’s phase is thus
connected purely to holonomy and will remain unchanged.
The dynamical one will not.

B. Parallel transport

We will take a detour into parallel transport on mani-
folds. We repeat Berry’s illustration [3] which will hope-
fully elucidate many things. Consider therefore parallel
transport along a curve C ⊆ S2. The curve will be swept
out by r(t) ∈ S2 and we will be transporting a (unit)
vector e(t) ∈ TS2 along it. By viewing both S2 and TS2

as being embedded in R3, we can form the usual dot
product between vectors in both these spaces, without

Figure 1: Parallel transport on S2, borrowed from [3].

needing any extra constructions. First of all, we clearly
have

r(t) · e(t) = 0 (24)

at all times. We also demand the length of the vector to
be constant, which implies ė(t) · e(t) = 0. This means we
can write

ė = Ω× e (25)

Now to determine Ω, we note that {r, ṙ, r× ṙ} form an
orthogonal basis. Now let’s find the change in r:

0 = d
dt (r · e) = ṙ · e + r · (Ω× e)

= (ṙ−Ω× r) · e (26)

So, r has the same evolution, except it’s pointing radially
out of the sphere at the start. Now we can put

Ω = c1ṙ + c2r× ṙ (27)

We have excluded the component of the form c3r, because
that would imply e rotates around r. Plugging this back
and expanding the triple vector product gives

0 = (ṙ− c2ṙ + c1r× ṙ) · e = 0 (28)

which implies c1 = 0 and c2 = 1. We can now write

ė = − (e · ṙ) r (29)

After a closed circuit, the vector e will fail to be parallel
to how it was at start, gaining instead an angle α(C),
despite never having been actually rotated. Now consider
transporting an orthonormal frame (e, e′). We may clearly
take e′ = r× e, and we can verify that the entire frame
will be rotated by the same amount α(C). We would
like to measure this using a local basis. Recall that S2

is not parallelizable (“hairy ball” theorem!) so there are
no globally defined nonvanishing vector fields. Still, if we
agree to avoid let’s say the poles, we the two vectors

u = (− sinφ, cosφ, 0) = φ̂ (30)
v = (− cos θ cosφ,− cos θ sinφ, sin θ) = −θ̂ (31)
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which provide us with a single valued basis. Along C,
these two bases are connected via a t-dependent SO(2)
transformation, but since SO(2) ∼= U(1) and we like U(1)
better, we should complexify them.

Consider two therefore vectors spanned by these bases.

ne = 1√
2

(e + ie′) (32)

n = 1√
2

(u + iv) (33)

and note that the constancy of the vector’s lenght auto-
matically gives

0 = d
dt (n∗e · ne) = 2Re{n∗e · ṅe} (34)

Since we have likewise ṅe = −(ne · ṙ)r, we compute

n∗e · ṅe = − (n∗e · r) (ne · ṙ) = 0 (35)

since ne and its complex conjugate are orthogonal to r.
Since the vector is already normalized, this leaves us with
only the condition

Im (n∗e · ṅe) = 0 ⇒ Im (n∗e · dne) = 0 (36)

where we promoted the infinitesimal change during dt to
the exterior derivative of the section, which we can view
simply as a vector-valued 1-form - more on that later.

We can finally find the angle α(C). Using a U(1)
transformation we relate

ne(t) = eiα(t)n(t), α(t) ∈ R (37)

Plugging it back into the above condition gives

dα = Im (n∗ · dn) (38)

And therefore we get a very familiar phase back:

αC =
˛
dα = Im

˛
(n∗ · dn) (39)

= Im
¨

(dn∗ ∧ ·dn) (40)

Computing this area element in terms of

n = 1√
2

(
φ̂− iθ̂

)
(41)

gives us dθdφ sinφ, so that α(C) = Ω(C), the solid angle
subtended by C viewed from the origin.

We can clearly see the analogy with our previous con-
siderations. We showed that for a special vector |ñ(X)〉
whose connection (21) vanishes, ie

〈ñ(X)|dñ(X)〉 = 0 (42)

we obtain Berry’s phase after going along a closed path.
We also had to connect this to a single-valued frame, also
by a U(1) transformation. However, we didn’t start with

this condition, we saw it must hold if we wanted to gauge
the phase away.

Note that adiabaticity made us demand orthogonality
hold infinitesimally

〈n(t)|m(t+ δt)〉 = 0 (43)
⇒ 〈n(t)| ∂t |m(t)〉 = 0 (44)

however we didn’t ask for this to be true when |m〉 = |n〉.
What would that imply geometrically is clear. We move
the vector around so that it remains parallel to itself at
nearby points and this is nothing more than the definition
of parallel transport.

C. Line bundles

We now have a clear geometric picture of Berry’s phase
and we have freed ourselves from the schackles of Hamil-
tonians. What remains are U(1) gauge invariant vectors
which live on M . Since we associate a complex line
LX ∼= U(1) to each point X ∈ M , whose elements are
identified under a U(1) gauge transformation and since
we assume LX vary smoothly with X, we are dealing
with a hermitian line bundle P (U(1),M) over M . This
is exactly the definition of such an object. We can regard
|n(X)〉 as basis vectors of the lines LX and therefore as
sections. We will call the total space E. The canonical
projection amounts to π(eiβ(X) |n(X)〉) = X, and a local
section is a complex vector field |v〉 = v(X) |n(X)〉

We define covariant differentiation by restricting usual
C|S| differentiation to the one-dimensional fiber. Recall
that we started our whole discussion with a system with
a finite number |S| of eigenvalues and we used S as an
index set for them. Therefore, in a basis we have

∇ |v〉 = |n〉 〈n|dv〉 (45)

and a connection ω is given by

∇ |n〉 = |n〉 〈n|dn〉 = |n〉ω (46)

Given a smooth curve in the base space C : [0, 1]→ M ,
the section along this curve is its lift C̃ : [0, 1]→ E such
that π ◦ C̃ = C. If v is its tangent vector field, parallel
translation means∇v = 0 along the curve. Let’s calculate
that:

∇(v |n〉) = (dv + vω) |n〉 != 0 (47)

Since this is a complex line bundle, v(X) = eiβ(X), so
that this implies

dβ = iω = i 〈n|dn〉 (48)

Furthermore, we note that

∇ |v〉 = |n〉 eiβe−iβ 〈n|dv〉 = |v〉 〈v|dv〉 = 0 (49)

implies Im 〈v|dv〉 = 0. The holonomy of a curve is now
given exactly by Berry’s phase. Unsurprisingly, we have
recovered all the previous results!
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D. A simple proof of Chern’s theorem

Before showing an example of everything so far, we will
prove a deep geometrical result, namely Chern’s theorem.
Consider a closed, oriented 2-surface V embedded in M ,
and pick a path C ⊆ V . Now parallel-transport a particle
along that path. It acquires a geometric phase, γC . By
Stokes’ theorem, this can be expressed as an integral over
the surface, let’s call it Σ+ ⊆ V , such that ∂Σ+ = C.
Now suppose you parallel-transported it back along the
same path. This time, it picks up a phase −γ̃C and we
express it as the integral of a 2-surface Σ− = V − Σ+.
Now, this can’t possibly be right unless these phases add
to a multiple of 2πi. This means

γC − γ̃C =
ˆ

Σ+
F+ +

ˆ
Σ−

F− =
ˆ
V

F ∈ 2πiZ (50)

Here one integral flipped sign because its area element
is oriented in the opposite direction. Here the notation
suggests that there are only the two patches, Σ±, but the
integration may need to be done over more that just two.
Thus, by requiring consistency, we have proved [7]

Theorem III.1 (Chern) Let E be a hermitian line bun-
dle with a purely imaginary connection. Let V be a closed,
oriented 2−surface as above and let F be the curvature.
Then

i

2π

ˆ
V

F

is an integer. The integrand is called the Chern form, or
the first Chern characteristic.

Alternatively, simply contract the loop to a point. The
identity loop cannot give a nontrivial phase. Note that
in this approach we ought to have considered actually
shrinking the loop around some Dirac string type sin-
gularity, otherwise we cannot contract the loop, so this
approach is actually a bit trickier.

IV. EXAMPLES

A. Particle in a magnetic field

Consider a spin-1/2 particle in a slowly varying magnetic
field B. The Hamiltonian is given by

H(B) = 1
2µB σ ·B (51)

and there are two eigenvectors such that

H(B) |±(B)〉 = ±1
2µB |B| |±(B)〉 (52)

Parametrizing B = B(sin θ cosφ, sin θ sinφ, cosφ) will
give us the eigenvectors explicitly after a short calculation.

We obtain

|+(B)〉 = (cos θ/2, eiφ sin θ/2) (53)
|−(B)〉 = (− sin θ/2, e−iφ cos θ/2) (54)

We see that they only depend on the angles, therefore
our parameter space is actually S2. We note that this
representation is ill-defined at the poles. More specifically,
at the north pole we have |+〉 = (1, 0) but |−〉 = e−iφ(0, 1).
Similarly, |+〉 is multivalued at the south pole. We will,
of course, have two connections, but these will also inherit
this problem. We can calculate them from (21):

A+ = i 〈+|d+〉 = −1
2 (1− cos θ) dφ (55)

A− = i 〈−|d−〉 = +1
2 (1 + cos θ) dφ (56)

We note that these differ by −dφ, which means they are
related by a gauge transformation. They should both
give the same curvature, however they are related by a
parity transformation which flips orientation: (θ, φ) 7→
(π−θ, π+φ). Therefore we add extra signs F± = ±dA± =
∓ 1

2 sin θdθ ∧ dφ, which means

γC = ∓1
2Ω(C) (57)

where Ω(C) is the solid angle subtended by the curve
whose boundary is C. This corresponds to a magnetic
monopole of strength g = ∓1/2. In general, it can be
shown that for any spin we have

γC = −mΩ(C) (58)

where m is the projection of the spin on the z-axis. Note
the sign ambiguity! Any loop defines two solid angles
since it cuts S2 into two different surfaces. Depending on
the orientation of the curve, these differ by ±4π, which
thankfully changes γC up to a factor of 2π, so all is well.
Note also the validity of Chern’s theorem!

The Aharonov-Bohm effect is another example of geo-
metric phases at work. Here consider an electron being
dragged around a (for simplicity) infinitely thin solenoid.
Even though the magnetic field vanishes everywhere out-
side the solenoid, the vector potential does not. Since the
Hamiltonian is U(1) gauge invariant, we can immediately
identify the vector potential with Simon’s connection. In
this problem, the vector potential is given by

A = −i Φ
2πdφ (59)

where we have identified our parameter space with S1 to
consider only rotations around the solenoid. Here Φ is
the total flux, kept fixed as we shrink the solenoid. Now
parallel transport gives us a phase

Im
ˆ
C

A = − Φ
2πφ (60)

Note that the connection is flat, ie F = dA = 0, and that
Stokes’ theorem doesn’t apply because of the obstruction
at the center of the punctured plane.
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B. Generalizations

We will also generalize some of the results. First let’s
mention the case of N -fold degenerate eigenvalues. In
this case, parallel transport with period T yields

|na(T )〉 = eiγdUab(C) |nb(0)〉 (61)
where {|na〉} belong to the same degenerate subspace.
Now we need

Uab(C) = P exp
{(

i

˛
C

Aab,µdxµ
)}

(62)

where P signifies path ordering, and Aab,µ = 〈na|i∂µnb〉 .
This connection is called the Wilczek-Zee gauge poten-
tial and we are dealing with U(N), a non-abelian gauge
group. We may of course look at parallel transport on any
principal bundle, but we will not be able to associate a
physical system with unless the fibers are sums of various
U(N)’s.

The Aharonov-Andanan (AA) phase is a nonadiabatic
generalization, with loops in state space itself and not a
parameter space. We consider density matrices as main
objects of study, and consider a loop such that ρ(T ) =
ρ(0). This results in a dynamical phase

γd = −
ˆ T

0
dt 〈ψ(t)|H(t) |ψ(t)〉 (63)

as well as the geometric AA phase,

γAA =
˛
〈ψ(t)|idψ(t)〉 =

¨
Trρdρ ∧ dρ (64)

There is even a nonunitary analog discovered by Pan-
charatnam in which we divide an ensamble into two identi-
cal subensables and then subject one of them to a sequence
of measurements (nonunitary projections). In the case
that this system returns to its initial state, it again gains
a dynamical and geometric phase. We refer the reader to
[4] for a review.

V. CONCLUSION

We have given a brief overview of some basic geomet-
rical aspects of Berry’s phase, accompanied by a few
examples and analogies. But the main point wasn’t re-
ally Berry’s phase, it was the importance of geometry
in quantum evolution. Thus a seemingly unimportant
phase factor has a lot to say about how it lives on a
U(1) principal bundle and measures holonomy, and the
Aharonov-Andanan approach shows that this isn’t even
restricted to adiabatic evolution. It is common to talk
about gauge transformations in QFT, yet here we en-
counter it in nonrelatvistic quantum mechanics. And
it’s measureable! Our aim to attempt to demistify why
this phase exists and what’s so geometrical about it has
hopefully been achieved.

Appendix A: More of Berry’s curvature

Let us note two additional presentations of Berry’s
curvature, which we label with Fn to clarify which eigenket

it is associated with. We can insert a complete basis
system

∑
m |m〉〈m| as follows:

Fn = −Im 〈dn| ∧ |dn〉 (A1)

= −Im
∑
m6=n
〈dn|m〉 ∧ 〈m|dn〉 (A2)

where the m = n term drops out because it is real. Next
we note that due to 〈n|∂km〉 = −〈∂kn|m〉 we have the
following identity∑

n

Fn = −Im
∑
n,m

〈dn|m〉 ∧ 〈m|dn〉 (A3)

= −Im
∑
n,m

〈n|dm〉 ∧ 〈dm|n〉 (A4)

= +Im
∑
n,m

〈dm|n〉 ∧ 〈n|dm〉 (A5)

= −
∑
n

Fn = 0 (A6)

This was also another justification for adding a minus sign
in our discussion of the two level system, but we note that
by using the form (A2) we can calculate this explicitly.

Now we recall (5) which we can reformulate as

〈m|dn〉 = −〈m|dH |n〉
Em − En

. (A7)

We insert this into (A2) to obtain

Fn = −Im
∑
m 6=n

〈n|dH |m〉 ∧ 〈m|dH |n〉
(En − Em)2 (A8)

We can use this result to obtain Berry’s angle for a particle
of arbitrary spin j [1], because

dH = 1/2µBd(σ ·Br) = 1/2µBBσ · dr (A9)

Note that accidental degeneracies ruin this approach. In
the two-level system we considered, this happens only at
the origin. Clearly, there is a geometrical reason obstruc-
tion to constructing line bundles at these submanifolds.

Appendix B: A quantum “metric tensor”

Since Fn is the imaginary part of something, it would
stand to reason that there is a gauge invariant tensor that
corresponds to this something. There isn’t much choice
here, we need to build it from 〈∂in| · · · |∂jn〉. It turns out

Tij = 〈∂in| (1− |n〉〈n|) |∂jn〉 (B1)

is such a choice. Its imaginary part is exactly 2 (Fn)ij ,
and its real part is symmetric and clearly connected to a
natural notion of distance in Hilbert space, 1− | 〈1|2〉 |2.
The infinitesimal version of this distance indeed yields
exactly this metric.
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